annakorotaev3
?>

Х+2х++2012х=-3- решите ! это уравнение

Алгебра

Ответы

larazaytseva
Х*(1+2+...2012)=-3*(1+2+...2012)
х=-3
dentob72
Task/25916878

2)

f(x)= 2x+3 ∛x² 
Найдите:
а) Критические точки функции f(x) на отрезке [-8;1]
б) Наибольшее и наименьшее значение функции f(x) на отрезке [-8;1]
---
a)
Критическая точка функции  это значение аргумента  при котором производная функции  равно нулю или не существует.
f'(x) = 2 +3*(2/3) x ^(-1/3) =2 +2/∛x =2(∛x +1) / ∛x
f'(x) =0 ⇔ ∛x +1 = 0 ⇔∛x = -1 ⇒ x = -1  
и
∛x = 0 ⇒ x = 0 , где производная функции  не существует.
 * * *   -1  и 0 ∈ [ -8 ;1] . * * *
ответ : -1  ; 0 .
б)
f'(x)           +                      -                         +
[-1 ] 0
f(x) (возр) ↑    max   (убыв) ↓     min   (возр) ↑    

max f(x) =f(-1) =2*(-1) +3∛(-1)² = -2+3 =1.
min f(x) = f(0) =2*(0) +3∛(0)²  = 0.
ответ : 1  ; 0 .

3)
Найдите наибольшее и наименьшее значение функции
 f(x) =x^5+ 2x^3+3x-11 на отрезке [-1;1]
---
f ' (x) =(x⁵  + 2x³  +3x - 11 ) ' =5x⁴+6x² +3  >0 функция возрастающая при всех  x ∈( -∞ : ∞) .
min f(x) = f(-1) =(-1)⁵  + 2*(-1)³  +3*(-1) - 11 = -1 -2 -3 -11 = -17.
max f(x) = f(1) =1⁵  + 2*1³  +3*1 - 11 = - 5.
ответ : -17  ; - 5 .

4)
Дана функция f(x) = x^3+3x^2+3x+a. Найдите значение параметра а, при котором наименьшее значение функции f(x) на отрезке [-2;1] равно 6.

f(x) = x³+3x²+3x+a ;
f '(x) = 3x²+6x+3 =3(x² +2x+1) =3(x+1)² ≥ 0 →функция везде возрастает  
min f(x) = f(-2) = (-2)³ +3*(-2)² +3*(-2)  +a = -8 +12 -6 +a = a - 4 .
По условию min f(x)  = 6 
 a - 4 =6 ⇔a =4+6

ответ:  10 .

Удачи !
andreyduborezz2913

1. f(x)=2+\sin 4x\\\\F(x)=2x-\frac{\cos4x}{4}+C.\\\\F(\frac{\pi}{4})=-3\pi;\\\\ 2\cdot\frac{\pi}{4}-\frac{\cos\pi}{4}+c=-3\pi;\\\\\frac{\pi}{2}+\frac{1}{4}+c=-3\pi \\\\ C=-3\pi-\frac{\pi}{2}-\frac{1}{4}\\\\C=-\frac{7\pi}{2}-\frac{1}{4}

Заданная первообразная - F(x)=2x-\frac{\cos4x}{4}-\frac{7\pi}{2}-\frac{1}{4}

F(\frac{7\pi}{4})=2\cdot\frac{7\pi}{4}-\frac{\cos7\pi}{4}-\frac{7\pi}{2}-\frac{1}{4}=\frac{7\pi}{2}+\frac{1}{4}-\frac{7\pi}{2}-\frac{1}{4}=0.

ОТВЕТ: 0.

2. f(x)=e^x+2x+1, \max_{[0;2]}F(x)=e^2.\\\\F(x)=e^x+x^2+x+C.

График данной первообразная вне зависимости от значения константы на заданном отрезке монотонно возрастает. Поэтому максимальное значение первообразная принимает на правом конце отрезка [0; 2] - т.е. при х = 2.

F(2)=e^2+2^2+2+C=e^2+6+C=e^2;\\\\e^2+6+C=e^2\\\\6+C=0\Rightarrow C=-6.

Заданная первообразная - F(x)=e^x+x^2+x-6.

Соответственно все из того же факта монотонного возрастания следует и то, что минимальное значение первообразная принимает на левом конце отрезка [0; 2] - т.е. при х = 0.

F(0)=e^0+0^2+0-6=1-6=-5.

ОТВЕТ: -5.

3. f(x)=-\frac{6}{x^2}=-6x^{-2}, x\in(-\infty; 0) \\\\F(x)=-6\cdot\frac{x^{-2+1}}{-2+1}+C=-6\cdot\frac{x^{-1}}{-1}+C=\frac{6}{x}+C.

По условию F(-2)=-3;

\frac{6}{-2}+C=-3;\\\\ -3+C=-3\Rightarrow C=0.

Заданная первообразная - F(x)=\frac{6}{x}.

Решим уравнение F(x)=f(x):

\frac{6}{x}=-\frac{6}{x^2}, x\neq 0 \\\\ 6\cdot x^2=x\cdot-6;\\\\6x^2+6x=0;\\\\6x(x+1)=0\Rightarrow x_1=0, x_2=-1.

Однако вспоминаем про ограничение для самой переменной: x\neq 0 (о чем прописано также и в условии существования первообразной). Делаем вывод: уравнение имеет единственное решение x=-1

ОТВЕТ: {-1}.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Х+2х++2012х=-3- решите ! это уравнение
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zotti
Александровна-Павловна
elenasnikitina84
mariy-y34
bsi771184
brendacepedam
Мелконян1137
pavtrusov
tarasova
Azarenkoff
upmoskovskiy
elav20134518
k075ko8
dvpered
Денис_Петровна