Кграфику функции f(x)=-8x-x^2 проведены две касательные в точках x1=-6 и x2=1. найдите площадь треугольника, образованного этими касательными и осью ординат. ( ответ должен получиться 43, 75)
Найдём уравнение касательных к графику функции f(x) = -8x-x².
f'(x) = -(8x)'-(x²)' = -8-2x
Уравнение для касательной с абсциссой точки касания x₁ = -6:
f'(x₁) = f'(-6) = -8-2·(-6) = -8+12 = 4;
f(x₁) = f(-6) = -8·(-6)-(-6)² = 48-36 = 12;
y = f'(x₁)·(x-x₁)+f(x₁) = 4·(x-(-6))+12 = 4x+24+12 = 4x+36.
Уравнение для касательной с абсциссой точки касания x₂ = 1:
f'(x₂) = f'(1) = -8-2·1 = -8-2 = -10;
f(x₂) = f(1) = -8·1-1² = -8-1 = -9;
y = f'(x₂)·(x-x₂)+f(x₂) = -10·(x-1)+(-9) = -10x+10-9 = -10x+1.
Стороны треугольника лежат на прямых:
y = 4x+36; y = -10x+1; x = 0.
Найдём вершины треугольника.
Сторона AB лежит на оси Oy, поэтому высота CH, треугольника ABC, будет параллельна оси Ox. А значит, CH = |-2,5| = 2,5.
AB = 36-1 = 35, поскольку эта сторона перпендикулярна оси Ох.
Площадь треугольника равна полупроизведению его высоты и стороны к которой она проведена.
S(ABC) = = 2,5·35/2 = 175/4 = 43,75
ответ: 43,75.
Natalya
02.01.2022
Дана функция f(х) = 2х^3 + 3х^2 - 1. Найдите: 1)промежутки возрастания и убывания функции. Находим производную и приравниваем нулю: y' = 6x^2 + 6x = 6х(х + 1) = 0. Имеем 2 критические точки и 3 промежутка значений функции. На промежутках находят знаки производной. Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума. x = -2 -1 -0,5 0 1 y' = 12 0 -1,5 0 12. Функция на промежутке х ∈ (-∞; -1) ∪ (0; +∞) возрастает, на промежутке (-1; 0) убывает.
2)наибольшее и наименьшее значение функции на отрезке [-1;2}. Так как функция возрастает от 0 до +∞, то максимальное значение функции будет при х = 2, у = 27. наименьшее - в точке минимума х = 0, у = -1.
Кграфику функции f(x)=-8x-x^2 проведены две касательные в точках x1=-6 и x2=1. найдите площадь треугольника, образованного этими касательными и осью ординат. ( ответ должен получиться 43, 75)
Найдём уравнение касательных к графику функции f(x) = -8x-x².
f'(x) = -(8x)'-(x²)' = -8-2x
Уравнение для касательной с абсциссой точки касания x₁ = -6:
f'(x₁) = f'(-6) = -8-2·(-6) = -8+12 = 4;
f(x₁) = f(-6) = -8·(-6)-(-6)² = 48-36 = 12;
y = f'(x₁)·(x-x₁)+f(x₁) = 4·(x-(-6))+12 = 4x+24+12 = 4x+36.
Уравнение для касательной с абсциссой точки касания x₂ = 1:
f'(x₂) = f'(1) = -8-2·1 = -8-2 = -10;
f(x₂) = f(1) = -8·1-1² = -8-1 = -9;
y = f'(x₂)·(x-x₂)+f(x₂) = -10·(x-1)+(-9) = -10x+10-9 = -10x+1.
Стороны треугольника лежат на прямых:
y = 4x+36; y = -10x+1; x = 0.
Найдём вершины треугольника.
Сторона AB лежит на оси Oy, поэтому высота CH, треугольника ABC, будет параллельна оси Ox. А значит, CH = |-2,5| = 2,5.
AB = 36-1 = 35, поскольку эта сторона перпендикулярна оси Ох.
Площадь треугольника равна полупроизведению его высоты и стороны к которой она проведена.
S(ABC) =
= 2,5·35/2 = 175/4 = 43,75
ответ: 43,75.