prostopo4ta29
?>

A²-6a+2 , при а=3-√2 найти значение выражения.

Алгебра

Ответы

Рамиль211

a²-6a+2=(3-√2)²-6(3-√2)+2=9-6√2+2-18+6√2+2=9+4-18=-5

nikolai37

Сначала решаем соотв. однородное уравнение, запишем его характеристическое уравнение

\lambda^2-6\lambda+9=0λ

2

−6λ+9=0

имеем случай кратных действительных корней, значит общее решение однородного уравнения

y(x)=C_1*e^{3x}+C_2*x*e^{3x}y(x)=C

1

∗e

3x

+C

2

∗x∗e

3x

Далее применим метод вариации. Тогда

\begin{gathered} \left( < br / > \begin{array}{cc} < br / > e^{3 x} & e^{3 x} x \\ < br / > 3 e^{3 x} & 3 x e^{3 x}+e^{3 x} \\ < br / > \end{array} < br / > \right) * \left( < br / > \begin{array}{c} < br / > C_1'(x) \\ < br / > C_2'(x) \\ < br / > \end{array} < br / > \right)=\left( < br / > \begin{array}{c} < br / > 0 \\ < br / > 9 x^2-12 x+2 \\ < br / > \end{array} < br / > \right) \end{gathered}

<br/>

<br/>e

3x

<br/>3e

3x

<br/>

e

3x

x

3xe

3x

+e

3x

<br/>

<br/>

<br/>C

1

(x)

<br/>C

2

(x)

<br/>

<br/>

=

<br/>

<br/>0

<br/>9x

2

−12x+2

<br/>

<br/>

Откуда получим

C_1'(x)=-e^{-3x}*x*(9x^2-12x+2), < br / > C_2'(x)=e^{-3x}*(9x^2-12x+2)C

1

(x)=−e

−3x

∗x∗(9x

2

−12x+2),<br/>C

2

(x)=e

−3x

∗(9x

2

−12x+2)

Интегрированием находим

C_1(x)=-e^{-3 x}(x^2 - 3 x^3)+A, C_2(x)=e^{-3 x} (2 x - 3 x^2)+BC

1

(x)=−e

−3x

(x

2

−3x

3

)+A,C

2

(x)=e

−3x

(2x−3x

2

)+B

Следовательно общее решение уравнения запишется как (переобозначим константы A и B )

y(x)=(-e^{-3 x}(x^2 - 3 x^3)+C_1)*e^{3x}+(e^{-3 x} (2 x - 3 x^2)+C_2)*x*e^{3x}y(x)=(−e

−3x

(x

2

−3x

3

)+C

1

)∗e

3x

+(e

−3x

(2x−3x

2

)+C

2

)∗x∗e

3x

или

y(x)=C_1*e^{3x}+x*C_2*e^{3x}+x^2y(x)=C

1

∗e

3x

+x∗C

2

∗e

3x

+x

2

Соотв. постоянные для нашей задачи Коши находятся из системы

\left \{ {{y(0)=0} \atop {y'(0)=3}} \right.{

y

(0)=3

y(0)=0

Откуда

\left \{ {{C_1=0} \atop {C_2=3}} \right.{

C

2

=3

C

1

=0

Nurislamovna1543

y=x²-4x+3

y=ax²+bx+c

a=1, b=-4, c=3

1) Координаты вершины параболы:

х(в)= -b/2a = -(-4)/(2*1)=4/2=2

у(в) = 2²-4*2+3=4-8+3=-1

V(2; -1) - вершина параболы

2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2

3) Точки пересечения графика функции с осями координат:

с осью Оу:  х=0, y(0)=0²-4*0+3=3  

Значит, (0;3) - точка пересечения параболы с осью Оу

с осью Ох: у=0, x²-4x+3=0

                          D=(-4)²-4*3*1=16-12=4=2²

                          x₁=(4+2)/2=6/2=3

                          x₂=(4-2)/2=2/2=1

                         (3;0) и (1;0) - точки пересечения с осью Ох

4) Строим график функции:

Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси  симметрии параболы

5) По рисунку видно, что график функции находится в I, II и IV четвертях.

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

A²-6a+2 , при а=3-√2 найти значение выражения.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

morozov1605
danya1509379
takerra
YelenaZOLTANOVICh105
CafedeMinou
Nikolaevna382
bk4552018345
prettymarina2015
kirill76536
Zeitlinama7067
mashiga2632
zurabghiendzhoian886
rayon14
Kushchenko-Monashev
Alisa