Ну алгоритм не алгоритм, а принцип построения поясню. Во первых слева дополнительное слагаемое +1 "сдвигает" график исходной функции на одну единицу вверх вдоль (параллелно) оси OY. График "поднимается" . (Если бы было -1, график исходной функции сдвинулся бы на 1 вниз).
Вообще,чтобы получить график функции f(x)+B, исходный график нужно сместить на B единиц вверх (при B>0), или вниз ( при B<0).
Далее График функции y=f(x+C) получается из исходного графика функции y=f(x) путем сдвига его вправо (С<0) или влево (C>0) на C единиц.
Т.е. в нашем случае нам нужно сдвинуть исходный график y=x^2 на 1 единицу вверх и на 2 единицы вправо. Ну и коэффициент a при х^2 "растягивает" или "сжимает" график к вертикальной оси. Может даже "Зеркально отразить" исходный график (при a=-1).
Чтобы из исходного графика y=x^2 получить график y=a*x^2 нужно координаты всех его точек (на практике только нескольких опорных пересчитать по следующему принципу (x, a*x^2). Т.е координата X, выбранной точки не меняется, а координату Y надо умножить на a.
P.S. В свое время в учебниках что-то подобное писали, недавно я встречал подобные и более подробные рассуждения в книге: Зельдович Я. Б. "Высшая математика для начинающих и ее приложения к физике"
Энверович
23.03.2021
Число 59 по условию это число равно: 5х+4=6у+5 5х-6у=5-4 5х-6у=1 5х=6у+1 5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6 Подбираем числа делящиеся на 5: 15=14+1, не подходит, т. к.14 не делится на 6 25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно. 30=29+1 - нет 35=34+1 - нет 40= 39+1- нет 45= 44+1 - нет 50= 49+1 - нет 55=54+1 - да. Тогда задуманное число 55+4=59. 59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.