Пусть собственная скорость теплохода х км/ч. Скорость теплохода по течению реки равна (х + 3) км/ч. Скорость теплохода против течения реки (х – 3) км/ч. На путь по течению реки теплоходу понадобилось 76/(х + 3) часа, а на путь против течения реки – 76/(х – 3) часа. На весь путь туда и обратно теплоход потратил (76/(х + 3) + 76/(х – 3)) часа или (20 – 1) = 19 часов. Составим уравнение и решим его.
76/(х + 3) + 76/(х – 3) = 19 – приведем к общему знаменателю (х + 3)(х – 3) = x^2 – 9; первую дробь домножим на (х – 3), вторую – на (х + 3) и число 19 – на (x^2 – 9); далее решаем без знаменателя, т.к. две дроби с одинаковым знаменателем равны, если равны их числители;
76(x – 3) + 76(x + 3) = 19(x^2 – 9);
76x – 228 + 76x + 228 = 19x^2 – 171;
-19x^2 + 76x + 76x + 171 = 0;
19x^2 – 152x – 171 = 0;
D = b^2 – 4ac;
D = (- 152)^2 – 4 * 19 * (- 171) = 23104 + 12996 = 36100; √D = 190;
x = (- b ± √D)/(2a);
x1 = (152 + 190)/(2 * 19) = 342/38 = 9 (км/ч);
x2 = (152 – 190)/(2 * 19) < 0 – скорость не может быть отрицательным числом.
ответ. 9 км/ч
Объяснение:
думаю ))
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
Поделитесь своими знаниями, ответьте на вопрос:
= 105√10 = 105* 3,16=331,8