пара чисел (1;-6) для уравнения p^2*x+p*y+8=0
p^2 - 6p + 8 = 0
D = 36 - 4*8 = 36 - 32 = 4 = 2^2
p1 = (6-2)/2 = 2 p2 = (6+2)/2 = 4
p^2-6p+8=0
р*р - 4р - 2р + 2*4 = 0 (разложим на множители)
сгрупируем по парам - первые два(тут можно за скобки вынести "р")
и вторые сгрупируем - тут вынесим за скобки "-2" )
р * ( р - 4) - 2 (р - 4) = 0
теперь опять как бы вынесим за скобки (р-4)
(р-4) (р-2) = 0
р - 4 = 0 и р - 2 = 0
р = 4 р = 2
данная пара чисел (1;-6) будет являться решением уравнения p^2*x+p*y+8=0 при р = 2 или р = 4
ответ: потому что уравнение x²-5*x+36 не имеет действительных корней.
Объяснение:
Если уравнение a*x²+b*x+c=0 имеет действительные корни x1 и x2, то a*x²+b*x+c=a*(x-x1)*(x-x2), то есть в этом случае квадратный трёхчлен a*x²+b*x+c можно представить в виде произведения двух многочленов первой степени x-x1 и x-x2. В нашем же случае уравнение x²-5*x+36=0 имеет отрицательный дискриминант D=(-5)²-4*1*36=-119, поэтому это уравнение не имеет действительных корней. А значит, данный квадратный трёхчлен нельзя представить в виде произведения многочленов первой степени.
Поделитесь своими знаниями, ответьте на вопрос:
Решите систему уравнения, подробно. {x-2y=1 {xy+y=12 и ещё одну систему {b=a+7 {a²+b²=13² надо)