kuchino09
?>

Изобразите на координатной прямой множество точек , удовлетворяющих условиям : а) | x - 5 | = 3 | x - 5 | ≤ 3 | x - 5 | ≥ 3

Алгебра

Ответы

studiojanara
Х=8 Х=-2
х=8
Х=-2
Уравнение сам решай
s45983765471717
|2x-6|=4х-2
Уравнение с модулем решаются одинаково: надо знак модуля снять, используя формулу: |x| = x при х ≥ 0 
                                   |x| = -x при x < 0
( короче, если под модулем стоит положительное число, то без модуля пишем, ничего не меняя; если под модулем стоит отрицательное число, то пишем без модуля и меняем при этом знак)
1) 2х - 6 = 0
     2х = 6
      х = 3
2) -∞       3          +∞
          -          +          это знаки 2х -6 
3) а) (-∞; 3]
-2x +6 = 4x -2
-6x = -8
x = 4/3 ( в указанный промежуток не входит)
      б) (3; +∞)
2х - 6 = 4х -2
-2х = 4
х = -2 ( в указанный промежуток не входит)
4)ответ данное уравнение не имеет решения.
Александрович175
Это неполное задание. Полностью оно звучит так:
Функция f(x) задается системой:
{ f(x) = x + 3 ; при x < 0
{ f(x) = (x - 1)(x - 3) ; при 0 < x < 5
{ f(x) = -x + 13 ; при x > 5
При некотором k уравнение f(x) = k(x + 3) имеет ровно 3 корня.
Решение. Прямая y = k(x + 3) проходит через точку (-3; 0).
При любом k она будет пересекать две прямых, при x < 0 и при x > 5.
При k = 1 она совпадает с прямой f(x) = x + 3, тогда уравнение имеет бесконечное количество корней.
Ровно 3 корня будет, если эта прямая проходит через вершину параболы.
M0(2; -1).
Уравнение прямой через 2 точки:
(x + 3) / (2 + 3) = (y - 0) / (-1 - 0)
(x + 3)/5 = y/(-1)
y = -1/5*(x + 3)
k = -1/5

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Изобразите на координатной прямой множество точек , удовлетворяющих условиям : а) | x - 5 | = 3 | x - 5 | ≤ 3 | x - 5 | ≥ 3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

antoska391
Евгения-Валерий
ribanina
dinadumno2114
muziumednogorsk
davidovalbert6
muraveiynik
gusinica23
abroskin2002
Sergei
Shamsulo
cherkashenko87543
Никитина580
Sofinskaya1185
Волков1968