Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
Объяснение:
b₃=b₂+18; b₃=b₁q+18; b₃=b₁q²
b₃=b₁+9; b₃=b₁q²
Система уравнений:
b₁q+18=b₁q²; b₁q²-b₁q=18; b₁q(q-1)=18
b₁+9=b₁q²; b₁q²-b₁=9; b₁(q²-1)=9; b₁(q-1)(q+1)=9
(b₁q(q-1))/(b₁(q-1)(q+1))=18/9
q/(q+1)=2
q=2q+2
q-2q=2
q=-2 - знаменатель геометрической прогрессии.
b₁+9=b₁·(-2)²; b₁+9=4b₁; 9=4b₁-b₁; b₁=9/3=3 - 1-й член геометрической прогрессии.
b₃=3+9=12 - 3-й член геометрической прогрессии.
b₂=12-18=-6 - 2-й член геометрической прогрессии.
b₄=b₃q=12·(-2)=-24 - 4-й член геометрической прогрессии.
b₅=b₄q=-24·(-2)=48 - 5-й член геометрической прогрессии.
Поделитесь своими знаниями, ответьте на вопрос:
Время выполнения заказа 2м заводом - х+4
1/х + 1/(х+4) производительность заводов
[1/х + 1/(х+4)]*24=5
24x + 96 + 24x = 5x(x+4)
5x^2 - 28x - 96 = 0
x1 = 8
x2 = -2,4
первый завод выполняет заказ за 8 дней
второй завод выполняет заказ за 12 дней