Для решения задачи через квадратное уравнение, необходимо обозначит скорость течения реки как х км/ч.
В таком случае, скорость теплохода по течению будет равна: (18 + х) км/ч.
Скорость теплохода против течения реки составит: (18 - х) км/ч.
Получим уравнение суммы времени.
(50 / (18 + х)) + (8 / (18 - х)) = 3
900 - 50 * х + 144 + 8 * х = -3 * х^2 + 972.
3 * х^2 - 42 * х + 72 = 0.
х^2 - 14 * х + 24 = 0.
Д^2 = (-14)^2 - 4 * 1 * 24 = 196 + 96 = 100.
Д = 10.
х = (14 - 10) / 2 = 4 / 2 = 2 км/ч.
Скорость течения реки 2 км/ч.
a) 50
b) [0; 5]
c) [144; 400]
Объяснение:
Для решения этих примеров нужно указать, что функция y=√x является неотрицательной и возрастающей.
a) График функции проходит через точку (a; 5√2). Найдите значение a.
5√2=√a
a=50
b) Если x ∈ [0; 25], то какие значение будет принимать данная функция?
На левой границе: x=0 ⇒ y=√0=0
На правой границе: x=25 ⇒ y=√25=5
Т .е. функция будет принимать значения [0; 5]
c) Найдите значения аргумента, если y ∈ [12; 20]
На левой границе: y=12 ⇒ x=12²=144
На правой границе: y=20 ⇒ x=20²=400
Т.е. аргумент будет принимать значения [144; 400]
Поделитесь своими знаниями, ответьте на вопрос:
Применяя формулу сокращенного умножения, запишите выражение в виде многочлена стандартного вида (х-у)^3