Пусть m - мальчики, а g - девочки. рассадка в зале будет выглядеть так: здесь важен именно порядок. (от 1 до 6), но мы можем рассмотреть перестановки мальчиков и девочек по отдельности: и при этом следует понимать, что для каждой такой комбинации девочек можно поставить любую уникальную комбинацию мальчиков, так что общее количество будет равняться произведению всех вариантов для девочек и всех вариантов для мальчиков. m - перестановки мальчиков. g - перестановки девочек. r = m*g m = 6! = 720 g = 5! = 120 r = 720 * 120 = 86400 - ответ
muzeynizhn
17.06.2022
Cos²x - 3cosxsinx + 2sin²x =0 разделим обе части на cos²x≠0 tg²x - 3tgx + 2 = 0 tgx = m m² -3m +2 = 0 d = (-3)² - 4*2 = 9-8=1 m₁ = (3+1)/2 = 2 m₂ = (3 - 1)/2 = 1 tgx =2 tgx = 1 x = arctg2 + πn, n ∈ z x = arctg1 + πn, n ∈ z x = π/4 + πn, n ∈ z
(а-2)*(а^2+2a+4)=0
перемножаем скобки и получаем
a^3+2a^2+4a-2a^2-4a-8=0
a^3-8=0
a^3=8
a= корень третьей степени из 8
а=2