сначала применим к правой части формулу приведения:
cos 2x = -cos x
cos 2x + cos x = 0
2cos²x - 1 + cos x = 0
Пусть cos x = t, причём |t| ≤ 1
2t² + t - 1 = 0
D = 1 + 8 = 9
t1 = (-1 - 3) / 4 = -1
t2 = (-1 + 3) / 4 = 1/2
cos x = -1 или cos x = 1/2
x = π + 2πn,n∈Z x = ±arccos 1/2 + 2πk,k∈Z
x = ±π/3 + 2πk,k∈Z
Данные решения могут совпадать, что разумеется нам не надо, поскольку тогда придётся писать что-то одно. В данном случае не совпадают, и это хорошо видно по числовой окружности, нанеся на неё точки π/3 и π видно, что решения никогда не наложатся одно на другое.
Поэтому, произведём отбор корней по обоим формулам.
Отберём корни из первого решения. Для этого впихнём данное решение в указанный промежуток и решим двойное неравенство относительно n:
3π/2 ≤ π + 2πn ≤ 5π/2
π/2 ≤ 2πn ≤ 3π/2
Разделим на 2п:
1/4 ≤n≤ 3/4
Видим, что никаких целых n нет на данном интервале. Значит, данное решение мы отбрасываем.
Осталось второе решение.
Также вобьём его в указанный промежуток и решим полученное двойное неравенство относительно k, но разобъём данное объединённое решение ещё на два и провернём с каждым подобную операцию:
3π/2 ≤ π/3 + 2πk ≤ 5π/2
7π/6 ≤ 2πk ≤ 13π/6
Разделим данное неравенство на 2π:
7/12 ≤ k ≤ 13/12
Замечаем, что на данном промежутке единственное целое значение k - это k = 1. Подставив его в общую формулу вместо k, получим тот самый корень, который нам требуется:
k = 1 x = π/3 + 2π = 7π/3 - это нужный отобранный корень
Теперь проверим. есть ли ещё такие корни.
Для этого впихнём в данный промежуток второй вариант решения ±π/3 + 2πk, это -π/3 + 2πk:
3π/2 ≤ -π/3 + 2πk ≤ 5π/2
11π/6 ≤ 2πk ≤ 17π/6
11/12 ≤ k ≤ 17/12
По неравенству видно, что есть опять же только единственное значение k - это 1. Подставив его в эту формулу получим наш второй корень:
k = 1 x = -π/3 + 2π = 5π/3
Таким образом, ответ пишем таким образом:
а)π + 2πn,n∈Z; ±π/3 + 2πk,k∈Z
б)7π/3; 5π/3
Под буквой б - наши отобранные корни на заданном промежутке. Задача выполнена.
Пусть собственная скорость лодки - х км/ч, составим таблицу:
S (км) V (км/ч) t(ч)
по течению 24 х + 3 24/( х + 3)
по озеру 10 х 10/х
против течения 24 х - 3 24/( х - 3)
Зная, что на путь против течения реки они затратили столько же времени, сколько на путь по течению реки и по озеру, составим уравнение:
24/( х - 3) = 24/( х + 3) + 10/х | * х( х - 3)( х + 3)
24 х( х + 3) = 24 х( х - 3) + 10( х - 3)( х + 3) |: 2
12 х( х + 3) = 12 х( х - 3) + 5( х - 3)( х + 3)
12 х² + 36х = 12 х² - 36х + 5( х² - 9)
36х = - 36х + 5 х² - 90
5 х² - 72х - 90 = 0
D = 72² + 4*5*45 = 5184 + 900 = 6084
√D = 78
х₁ = (72 + 78)/ 2*5 = 150/10 = 15 (км/ч) - обственная скорость лодки
х₂ = (72 - 78)/ 2*5 = - 6/10 = - 0,6 ( не подходит, т.к. скорость не может быть
отрицательной)
Скорость лодки по течению ровна: 15 + 3 = 18 (км/ч)
ответ: скорость движения лодки по течению реки 18 км/ч.
Поделитесь своими знаниями, ответьте на вопрос:
Сократите дробь a^2*b^2+4b^2-4a^2-b^4 / 2a-2b-b^2+ab