Y=f(x₀)+f'(x₀(x-x₀) - уравнение касательной. По условию касательная параллельна прямой y=-2x+6, значит коэффициент наклона прямой равен -2, а коэффициент наклона касательной есть значение производной в точке касания. Найдём точки, в которых производная функции y=-x²+4 равна -2. Сначала найдём производную y'=(-x²+4)'=-2x Приравняем производную к числу -2 -2x=-2 x₀=1 Найдём уравнение касательной к графику функции y=-x²+4 в точке x₀=1. Найдем значение функции в точке x₀=1. f(1)=-1²+4=3 f'(1)=-2 (по условию) Подставим эти значения в уравнение касательной y=3+(-2)(x-1)=3-2x+2=-2x+5
Vladimirovna1997
11.03.2023
Общий ход построения данных графиков: График - прямая, для построения требуется две точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу (для каждого графика свою, приведена ниже): Х= У= Отмечаем точки в системе координат, проводим через них прямую. Подписываем график. Всё! Итак, начнём:
у=-4х - прямая, проходящая через начало координат , поэтому достаточно ещё одной точки, например х=1, у= -4 , ставим точку (1;-4) и проводим прямую через эту точку и начало координат.