Свойства функции y=sinx
1. Область определения — множество R всех действительных чисел.
2. Множество значений — отрезок [−1;1].
3. Функция y=sinx периодическая с периодом T= 2π.
4. Функция y=sinx — нечётная.
5. Функция y=sinx принимает:
- значение, равное 0, при x=πn,n∈Z;
- наибольшее значение, равное 1, при x=π2+2πn,n∈Z;
- наименьшее значение, равное −1, при x=−π2+2πn,n∈Z;
- положительные значения на интервале (0;π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z;
- отрицательные значения на интервале (π;2π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z.
6. Функция y=sinx:
- возрастает на отрезке
[−π2;π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z;
- убывает на отрезке
[π2;3π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z.
Объяснение:
походу) если неправильно сори)
1а)7,9 б)-3,5 в)6 2.а)3 б)12 в)3 г)20 3. а)х=±0,8 б)х=±√17 4.а)2у в 4 степени; б)-28 5. 6,1∠√38∠6,2 6. х=3
Объяснение:√196=14, √0,36=0,6
а)1/2 *14+1,5* 0,6=7+0,9=7,9
б)1,5-7 * 5/7=1,5 -5=-3,5
в)(2√1,5)²=2²*(√1,5)²=4* 1,5= 6
2.а) √0,36*25=√0,36 *√25=0,6*5=3
б)√8*√18=√(4*2*2*9)=4*3=12
в)√27/√3=√(27/3)=√9=3
г)√〖2^4〗*〖5^2〗=2²*5-4*5=20
3.а) х²=0,64
х=±0,8
б)х²=17
х=±√17
4.а) у³√4у²=у³*2у=2 у∧4
б)7а √(16/а²)=-7а* (4/а)=-28
5. 6²=36
(6,1)²=37,21
(6,2)²=38,44
6,1∠√38∠6,2
6.√(х-2)=1 поднесем до квадрата обе части уравнения
х-2=1
х=1+2
х=3
Поделитесь своими знаниями, ответьте на вопрос:
Сократите дробь, , нужно, буду безмерно . p(в квадрате)-11p+10 20+8p-p(в квадрате)
по теореме Виета:
отсюда:
по теореме Виета:
отсюда: