anechcak
?>

4x^2*y-x^3-4xy^2 представьте в виде произведения выражение

Алгебра

Ответы

kirieskamod262
4x²y-x³-4xy²=x(4xy-x2-4y²) = -x(x²-4xy+4y²)=-x(x-2y)²
Yelena_Yuliya1847

Пусть меньший катет а, второй тогда а+5; гипотенуза а+10. По теореме ПИфагора а²+а²+10а+25=а²+20а+100; а²-10а-75=0, по теореме, обратной теореме Виета а₁=15; а₂=-5- не подходит по смыслу задачи, т.к. катет не может быть отрицательным. Значит, меньший катет 15, больший 20, гипотенуза 25, радиус найдем по формуле (а+в-с)/2=

(15+20-25)/2=5, здесь с-гипотенуза, а и в - катеты.

ответ 5

Можно было и так. площадь равна по Герону √(30*15*10*5)=√22500=

150, и применим формулу для радиуса, вписанной в треугольник окружности, т.е. площадь поделим на полупериметр, 150/30=5

хоть в лоб. хоть по лбу. ответ тот же. УСПЕХОВ!

ekkim310

1) Используя формулу n-го члена арифметической прогрессии a_n=a_1+(n-1)d, вычислим двадцатый член этой прогрессии:

a_{20}=a_1+(20-1)d=a_1+19d=-8+19\cdot2=-8+38=30


ответ: 30.


2) Формула суммы первых n членов арифметической прогрессии следующая: S_n=\dfrac{a_1+a_n}{2}\cdot n

a_1=7;~~ d=a_2-a_1=11-7=4

Найдем же сначала восемнадцатый член арифметической прогрессии

a_{18}=a_1+(18-1)d=a_1+17d=7+17\cdot4=75


S_{16}=\dfrac{a_1+a_{16}}{2}\cdot 16=8\cdot(a_1+a_{16})=8\cdot(7+75)=656


ответ: 656.


3) Первый член: a_1=4-5\cdot1=-1

  Второй член: a_2=4-5\cdot2=-6

 Третий член:  a_3=4-5\cdot3=-11

Как видно, каждый последующий член уменьшается на (-5),т.е. это разность d = -5, следовательно, последовательность является арифметической прогрессией.


4) Используя n-ый член арифметической прогрессии, найдем ее разность

a_{10}=a_1+(10-1)d=a_1+9d\\ d=\dfrac{a_{10}-a_1}{9}=\dfrac{-46+1}{9}=-5


a_n=a_1+(n-1)d\\ -86=-1+(n-1)\cdot(-5)\\ -85=-5(n-1)\\ n-1=17\\ n=18

Да, является арифметической прогрессией.


5) Данная последовательность является арифметической прогрессии с первым членом a_1=2 и разностью прогрессии d=1

Всего таких членов не трудно посчитать по формуле n-го члена арифметической прогрессии:

92=2+n-1\\ n=91


То есть, нужно посчитать сумму первых 91 членов арифметической прогрессии

S_{91}=\dfrac{a_1+a_{91}}{2}\cdot91=\dfrac{2+92}{2}\cdot91=4277


ответ: 4277.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

4x^2*y-x^3-4xy^2 представьте в виде произведения выражение
Ваше имя (никнейм)*
Email*
Комментарий*