Мода это значение которое встречается чаще всего в данном случае это 3,7
larinafashion829
27.06.2020
Десять карточек [0...9].
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому: б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна: в) Сумма равна 3, это ({0};{3}) или ({1};{2}) Вероятность равна: г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4}) Вероятность равна: д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5}) Вероятность равна: Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
AkulovaAnastasiya
27.06.2020
Ну, это не так трудно, как кажется на первый взгляд...Главное это выразить правильное, давай попробую объяснить на примере:
1. Как я и говорила, главное правильно выразить. Т.е: в первом неравенстве, нам лучше выразить х (как никак, подставить вместо "3х" во втором неравенстве будет легче). У нас получается: х= -1-2y "2y" мы просто перенесли с противоположным знаком.
2. Теперь, нам нужно подставить вместо коэффициента х во втором неравенстве, то есть 3* х1 - 4у = 17, где х1 - это у нас выраженный "х" из первого неравенства. Что получается:
3*( -1-2у ) - 4у = 17
3. Решим получившееся уравнение. Для этого, сначала раскроем скобки(3 умножим на то выражение, которое стоит в скобках):
-3-6у-4у=17 Теперь у нас появились "-6у" и "-4у", которые можно сократить. А "-3" перенес с противоположным знаком в правую часть:
-10у=20 у=-2 Мы получили "у", но так же нам нужно найти и "х". Теперь значение "у" подставим в первое неравенство ( можно конечно и во второе, но если мы подставим в первое - будет легче считать). Да и мы же выразили, чем равен "х" в первом неравенстве:
х= -1-2у Подставим с тобой "-2" вместо "у", отсюда: х = -1-2*(-2) х = -1 + 4 "+4" получилось потому что мы умножили "-2" на "-2" (-2*-2=4) х=3 ответ : (3;-2) Запомни, на первом месте всегда х, потом у
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите моду для выборки, заданной рядом 2; 3; 3; 6; 7; 9; 3; 7.
в данном случае это 3,7