bezzfamilny631
?>

(5-х)(5+х) как поменять что было (х-5)(5+х) ?

Алгебра

Ответы

avakarica
Вынесли минус из той скобки: (5-х)(5+х)=-(х-5)(5+х)
ты знак вынес и знаки в одной скобке поменялись
Pogosyan Nataliya

Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.

Т.к. площадь квадрата находят по формуле  S = а², где а - сторона квадрата,  о площадь данного квадрата равна (х²) см².

А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).

Т.к. площадь квадрата на 50 см² меньше площади прямоугольника,  то составим и решим уравнение:

3x² - 15х = x² + 50,

3x² - x² - 15x - 50 = 0,

2x² - 15x - 50 = 0,

D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,

x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,

x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.

Значит, сторона квадрата равна 10 см.

ответ: 10 см.

Shevchenko

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

(5-х)(5+х) как поменять что было (х-5)(5+х) ?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

tanysha1990
egolopuzenko4253
SAMSCHOOL96
natalya2321
prik-galina7390
dimkimka386
Yelena-Svetlana
murza2007
whitewhit90
Хромов1501
Андреевич
lika080489
Mariya694
lenalevmax7937
pavlova7771960