maksim1lssah575
?>

При каком значении x квадратный трёхчлен x в квадрате-4x+3 принимает своё наименьшее значение

Алгебра

Ответы

innaglobal21
X^2 - 4x + 3 = 0 ; D = 16 - 12 = 4 ; V D = 2 ; X1 = ( 4 + 2 ) : 2 = 3 ; X2 = ( 4 - 2 ) : 2 = 1 1 < 3 ; ответ при Х = 1
terma-msk1

опытаемся найти точки их пересечения, решив систему:

(x-2) 2 + (y-3) 2=16

(x-2) 2 + (y-2) 2=4

(x-2) 2=16 - (y-3) 2

(x-2) 2=4 - (y-2) 2,

отсюда 16 - (y-3) 2=4 - (y-2) 2

16-у2+6 у-9=4-у2+4 у-4 ещё

6 у-4 у=4-4+9-16 ещё

2 у=-7 найдём игрек

у=-3,5 и попробуем найти икс

(x-2) 2=4 - (-3,5-2) 2

(x-2) 2=4-30,25

(x-2) 2=-25,75, а квадрат не может быть отрицательным, следовательно, эти две окружности не пересекаются. центры окружностей - в точках (2; 3) и (2; 2) соответственно, то есть расстояние между центрами равно единице, а радиусы - 4 и 2, то есть вторая, меньшая, окружность расположена внутри первой.

ответ: малая окружность расположена внутри большой.

stark11
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\&#10;d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\&#10;0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\&#10;0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\&#10;0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\&#10;0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При каком значении x квадратный трёхчлен x в квадрате-4x+3 принимает своё наименьшее значение
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

chavagorin
zabrodin
Adassa00441
Tanyamitia
mstapottery
Есартия52
tumanowivan2015509
banketvoshod
e90969692976
Yurevich1291
polusik120796
Galkin Vladimirovich729
ElenaEgorova1988576
4*sin^2(x)-2*cos^2(x)-sin(x)=0 решить)
vs617
lolydragon