julya847
?>

Решить графически уравнение y=-x^2-2x-8=0

Алгебра

Ответы

asl09777
Y=-x^2-2x-8; -x^2-2x-8=0; делим все уравнения на -1; x^2+2x+8=0; D=4-4•1•8=4-32=-28; D<0, то корней нет
osipovasalex5316

№1


sin(1260°) + tg(-2460°) = ?


sin(1260°) = sin(180° • 7) = sin(360° • 3 + 180°) = sin(180°) = 0

tg(-2460°) = -tg(180° • 13 + 120°) = -tg(120°) = -√3

sin(1260°) + tg(-2460°) = -√3


№2

sin α = -√3/3

3π/2 < α < 2π

Найти:

cos α
tg α

ctg α


• cos α = ± √(1 - sin²α) = ± √(1 - ⅓) = ± √⅔

Так как 3π/2 < α < 2π, значит α ∈ IV четверти, ⇒ cos α > 0

⇒ cos α = √⅔


• tg α = sin α / cos α = -√3/3 : √⅔ = - 3/3√2 = -3√2/6 = - √2/3


• ctg α = 1/tg α = 1 : - √2/3 = - 3√2/2


№3

(1 + ctg²α) • sin²α - 1 = 1/sin²α • sin²α - 1 = 1 - 1 = 0

Sergeevna-Makarov

Объяснение:

какое условие такой и ответ
1/(1*4) = (1/1 - 1/4)*1/3

1/(4*7) = (1/4 - 1/7)*1/3
1/(7*10) = (1/7 - 1/10)*1/3

1/((3k-2)*(3k+1)) = (1/(3k-2) - 1/(3k+1))*1/3

1/((3k+1)*(3k+4)) = (1/(3k+1) - 1/(3k+4))*1/3

1/1*4 + 1/4*7 +...+  1/((3k-2)*(3k+1)) + 1/((3k+1)*(3k+4)) =
(1/1 - 1/4)*1/3 + (1/4 - 1/7)*1/3 +  (1/7 - 1/10)*1/3 + +  (1/(3k-2) - 1/(3k+1))*1/3 +(1/(3k+1) - 1/(3k+4))*1/3 =
=  (1/1 )*1/3 - 1/(3k+4)*1/3 =  1/3 - 1/(3k+4)*1/3  < 1/3 - доказано

если следовать точной обозначениям из задания  при условии что n принимает только определенные значения (n=3k+1)  то
1/1*4 + 1/4*7 +...+ 1/n*(n+3) = 1/3 - 1/(3*(n+3)) <  1/3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить графически уравнение y=-x^2-2x-8=0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

buleckovd8724
Сопова
Peshkov
zimbickij19
Anna389
bmargarita
Маринова
punctvydachi
bel1-79
jaksonj326
Шавкат кызы
Sergei1198
e90969692976
Прошкин_Николай368
Найдите значение выражения √8*√2+3​
abroskin2002