Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz, задана прямая a и точка формула, не лежащая на прямой a. Поставим перед собой задачу: получить уравнение плоскости формула, проходящей через прямую a и точку М3.
Сначала покажем, что существует единственная плоскость, уравнение которой нам требуется составить.
Напомним две аксиомы:
через три различные точки пространства, не лежащие на одной прямой, проходит единственная плоскость;
если две различные точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.
Объяснение:
х^2-6х+8>0
х^2-6х+8=0
дискрименант =36-32=4
х=(6-4):2=1
х=(6+4):2=5
рисуешь координатную прямую: + 1 - 5 +
х принадлежит (-бесконечности;1)и(от5;до +бесконечности)
(бесконечность рисуется,как перевернутая восьмерка)
2)
знаменатель(то что внизу):
х(3х+2)=0
х1=0
3х=-2
х2=-две третих
числитель:
(х+2)х(х-3)=0
х+2=0
х=-2(посторонний корень)
х=0
х-3=0
х=3
рисуешь координатную прямую и отмечаешь на ней числа
0 3
вот я только не помню,там нужно посторонние корни отмечать
Поделитесь своими знаниями, ответьте на вопрос:
Составить уравнение касательной и нормали к параболе y = x ^ 2-3x + 4 в точке x = 1
Это касательная.
Теперь уравнение нормали: