В решении.
Объяснение:
Из пункта А в пункт В, расстояние между которыми 210 км, одновременно выехали два автомобиля. Так как скорость первого автомобиля на 5 км/ч больше скорости второго, то первый автомобиль в пункт назначения прибыл на 12 мин раньше, чем второй. Найдите скорость каждого из автомобилей.
Формула движения: S=v*t
S - расстояние v - скорость t – время
Таблица:
v (км/час) S (км) t (час)
1 автомобиль х 210 210/х
2 автомобиль х - 5 210 210/(х - 5)
По условию задачи разница во времени 12 минут = 0,2 часа, уравнение:
210/(х - 5) - 210/х = 0,2
Умножить все части уравнения на х(х - 5), чтобы избавиться от дробного выражения:
210х - 210х + 1050 = 0,2х² - х
-0,2х² + х + 1050 = 0
Разделить все части уравнения на -0,2 для упрощения:
х² - 5х - 5250 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 25 + 21000 = 21025 √D=145
х₁=(-b-√D)/2a
х₁=(5-145)/2 = -140/2 = -70, отбросить, как отрицательный;
х₂=(-b+√D)/2a
х₂=(5+145)/2
х₂=150/2
х₂=75 (км/час) - скорость первого автомобиля;
75 - 5 = 70 (км/час) - скорость второго автомобиля;
Проверка:
210 : 75 = 2,8 (часа);
210 : 70 = 3 (часа);
3 - 2,8 = 0,2 (часа) - верно.
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение сведя его к квадратному 1) 2 cos²x+cosx-1=0 2) 2sin ²x-3 sin x-2=0 3) 6-tgx=tg²x 4)2tgx-5ctgx=3 5)cos x-sin²x=1
2.аналагичго
3.все в одну сторону и замена на t
4.делишь все на tg
5.по основному тождеству заменяешь sin^2