Михайловна-Гусева350
?>

Выписаны первые несколько членов прогрессии: -250; 150; -90; найдите её пятый член.

Алгебра

Ответы

mnogomams47
B1=-250; b2=150; b3=-90
b2/b1=q
q=150/-250=-3/5
b4=b3*q=-90*(-3/5)=54
b5=b4*q=54*(-3/5)=-162/5=-32,4
Boss5519
Далее все вычисления будем делать в одних и тех же единицах измерения, и привязанных к ним единицах пощади, т.е. в метрах и квадратных метрах.

Если обозначить длину и ширину, как: a и b , то для площади и периметра получатся выражения:

S = ab = 210 ;

P = 2(a+b) = 62 ;

a + b = 62 : 2 ;

a + b = 31 ;

b = 31 - a ;

Подставим это выражение для b в формулу для площади:

ab = a(31-a) = 210 ;

31a - a^2 = 210 ;

a^2 - 31a + 210 = 0 ;

Можно решить по формулам квадратного уравнения,
а если не знаете их, то так:

4a^2 - 4 \cdot 31a + 4 \cdot 210 = 0 ;

(2a)^2 - 2 \cdot 2a \cdot 31 + 31^2 - ( 31^2 - 4 \cdot 210 ) = 0 ;

( 2a - 31 )^2 = 961 - 840 ;

( 2a - 31 )^2 = 121 ;

( 2a - 31 )^2 = 11^2 ;

2a - 31 = \pm 11 ;

2a = 31 \pm 11 ;

a = \frac{ 31 \pm 11 }{2} ;

a_1 = \frac{ 31 - 11 }{2} = \frac{20}{2} = 10 м ;

a_2 = \frac{ 31 + 11 }{2} = \frac{42}{2} = 21 м ;

Подставим это выражение для a в формулу для b :

b_1 = 31 - a_1 = 31 - 10 = 21 м ;

b_2 = 31 - a_2 = 31 - 21 = 10 м ;

О т в е т :
возможные стороны прямоугольника – 10 метров и 21 метр.
aluka

Дан ромб ABCD: AC = 2√3 и BD = 2 — диагонали. Диагонали точкой пересечения делятся пополам и перпендикулярны друг другу, тогда:

OA = OC = AC/2 = 2√3/2 = √3;

OB = OD = BD/2 = 2/2 = 1;

∠AOB = ∠BOC = ∠COD = ∠DOA = 90°.

Таким образом, диагонали делят ромб ABCD на 4 равных прямоугольных треугольника.

1. Рассмотрим △AOB: ∠AOB = 90°, OA = √3 и OB = 1 — катеты.

Тангенсом острого угла прямоугольного треугольника является отношение длины катета, противолежащего данному углу, к длина катета, прилежащего к данному углу.

Найдем тангенс ∠OAB:

tg∠OAB = OB/OA = 1/√3 = 1/√3 * √3/√3 = (1 * √3)/(√3)² = √3/3.

∠OAB = 30°.

2. По теореме о сумме углов треугольника:

∠AOB + ∠OAB + ∠ABO = 180°;

90° + 30° + ∠ABO = 180°;

∠ABO = 180° - 120°;

∠ABO = 60°.

3. Диагонали ромба являются биссектрисами его углов, тогда:

∠A = 2 * ∠OAB = 2 * 30° = 60°;

∠B = 2 * ∠ABO = 2 * 60° = 120°.

Так как противолежащие углы ромба равны, то:

∠A = ∠C = 60°;

∠B = ∠D = 120°.

ответ: ∠A = 60°, ∠B = 120°, ∠C = 60°, ∠D = 120°.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выписаны первые несколько членов прогрессии: -250; 150; -90; найдите её пятый член.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

koptevan6
druzhbamagazin2457
У=-х(3-х), где: -2</=х</=4​
viktort889841
Telenkovav
Игорь Андрей
prohorovalena
irinaastapova2011
maria
Chistova-Dmitrii1162
zaotar2008
serebrennikova99
Ivan500
grazia2017
mouse-0211fsb3509
Александровна1244