Координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
Объяснение:
Решить графически систему уравнений:
у=3х
4х-у=3
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем второе уравнение в уравнение функции:
4х-у=3
-у=3-4х/-1
у=4х-3
Таблицы:
у=3х у=4х-3
х -1 0 1 х -1 0 1
у -3 0 3 у -7 -3 1
Согласно графика, координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
ух сколько ненужных лишних накруток
снимает нечетные степени , совершенно очевидно, что если число больше другого, то и в 9-й степени они будут также соотносится
∛x + 3^(x+1) - 3 > ∛x + 9^x - 3^x
∛x взаимно уничтожатся , никаких ограничений на корни нечетной степени неи надо (на четной надо)
9^x = (3^x)^2
3^x=t
3t - 3 > t^2 - t
t^2 - 4t + 3 < 0
D = 16-12 = 4
t12=(4+-2)/2 = 1 3
(t-1)(t-3) < 0
метод интервалов
(1) (3)
t∈(1 3)
t>1 3^x>1 3^x>3^0 x>0
t<3 3^x < 3 x < 1
x∈(0, 1)
Поделитесь своими знаниями, ответьте на вопрос:
18х-15(1, 8+1, 2х) =27 18-27? 18х=27 со знаком + или - с объяснением, .
2) -15 умножаем на 1,2 получем -18
3) -27-18=-45
4) 18х-45=0
18х=45
Х=45:18
Х=2,5