Для нахождения экстремумов (в т.ч. минимумов), нужно взять производную, приравнять её нулю и решить. Полученные значения проверить на максимум и минимум.
Имеем одно экстремальное значение х = -5. Если производная в этой точке меняет знак с минуса на плюс, то это минимум. Для практической проверки следует подставить в выражение производной значение икс несколько меньше (-5) и несколько больше (-5). Обычно следует выбирать такие значение, чтобы легче считалось.
Слева, или меньше (-5) выбираем х = -5,5 (в данном случае нельзя брать меньше минус 6, т.к. выйдем из ОДЗ). y'(-5,5) = 1- \frac{1}{-5,5+6} =1- \frac{1}{0,5} =1-2=-1\ \textless \ 0
Справа, или больше (-5) выбираем х = 0. y'(0) = 1- \frac{1}{0+6} =1- \frac{1}{6} = \frac{5}{6} \ \textgreater \ 0
Итак, мы видим, что производная (слева направо) меняет свой знак с минуса на плюс. Это означает, что найденный экстремум является минимум. Если было наоборот, то был бы максимум.
(2х - 1)/4 - (х + 3)/8 < -4 ⇔8(2x-1)/4-8(x+3)/8<8·(-4) ⇔ 2(2x-1)-(x+3)<(-32) ⇔
4x-2-x-3<(-32) 3x-5<(-32) ⇔ 3x<(-32+5 ) ⇔x<(-27/3)⇔ x<-9
или x∈(-∞,-9)