разделим обе стороны на 2 чтоб упростить
Функция синуса принимает положительные значения в первом и втором квадрантах. Для определения второго решения вычитаем решение из
π
, чтобы найти решение во втором квадранте.
Период функции
sin(2х)
равен
π
, то есть значения будут повторяться через каждые
π
радиан в обоих направлениях
для всех целых n
Выбираем тестовое значение из каждого интервала и подставляем его в начальное неравенство, чтобы определить, какие интервалы удовлетворяют неравенству.
1.
1 это ложно
2.
2 это истинно
3.
3 это ложно.
Итак
решение включает все истинные интервалы:
для всех целых n
В красной коробке: жёлтый и синий
В зелёной коробке: красный и жёлтый
В синей коробке: зелёный и зелёный
В жёлтой коробке: красный и синий
Объяснение:
КК, ЗК, СК, ЖК - коробки. (КК - красная коробка, ЗК - зелёная коробка и т.д)
(к, к), (к, з), ... - всевозможные неупорядоченные пары шариков. Например (к, с) - красный и синий шарик.
Изобразим графически "функцию из множества коробок в множество пар шариков", лол.
Если пара шариков лежит в коробке, то будем проводить от коробки стрелку к этой паре шариков. Например, если (к, с) лежит в синей коробки, то это будет выглядеть так:
СК -> (к, с)
По условию, в одной из коробок лежит (к, ж). Ясно, что точно не в синей, потому что там лежат шарики одинакового цвета. В красной и желтой эта пара тоже находится не может, из за первого условия задачи. Значит эта пара лежит в зелёной коробке.
К ->
З -> (к, ж)
С -> (x, x); x - неизвестный пока цвет.
Ж ->
Добьём красные и жёлтые шары. У нас остался 1 жёлтый шарик и 1 красный. Запихнуть их в синюю коробку не получится, отсюда ясно, что жёлтый лежит в красной, а красный в жёлтой.
К -> (ж, _)
З -> (к, ж)
С -> (x, x)
Ж -> (к, _)
Синие шарики мы не можем положить в синюю коробку, из за условия 1, а значит будет так:
К -> (ж, с)
З -> (к, ж)
С -> (x, x)
Ж -> (к, с)
Тогда в синей коробке лежат зелёные шары.
К -> (ж, с)
З -> (к, ж)
С -> (з, з)
Ж -> (к, с)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите наименьший положительный период функции y=2sinx + 3cos2x (cчитать число pi равным 3)
наименьший положительный период функции y=2sinx + 3cos2x
равен 2π
так. как для 2sinx наименьший положительный период равен T1=2π,
а для 3cos2x наименьший положительный период равен T2= 2π/2=π,
и наименьший положительный период T3=2π, который одновременно делится нацело как на T1 , так и наT2. (2π/(2π)=1 2π/π=1)