x³ - 36x = 0 x * (x² - 36) = 0 произведение равно нулю, когда хотя бы один из множителе равен нулю x = 0 | x² - 36 = 0 | x² = 36 | x = ±6 ответ: -6; 0; 6
Lidburg
09.09.2020
x^2 - x - 12 < 0 Разложим квадратный трехчлен x^2-x-12 на множители (Квадратный трехчлен ax^2+bx+с при a>0 и D=a^2-4ac>0 можно записать как ax^2+bx+с=a(x-x1)(x-x2), где x1 и x2 -корни уравнения ax^2+bx+c=0) x^2-x-12=0 D =1+48 =49 x1=(1-7)/2=-3 x2=(1+7)/2=4 Поэтому можно записать x^2-x-12 =(x+3)(x-4) Запишем неравенство снова x^2-x-12 < 0 или (x+3)(x-4) < 0 Решим неравенство методом интервалов Найдем значение х где множители меняют свой знак x+3=0 или х = -3 х-4=0 или х=4 На числовой прямой отобразим знаки левой части неравенства. Знаки можно определить методом подстановки. Например при х=0 х+3>0, а x-4<0 поэтому их произведение меньше нуля и так далее. + 0 - 0 +. !! -3 4 . Поэтому неравенство имеет решение если х принадлежит [-3;4] ответ:[-3;4]
Так как везде общий знаменатель,мы их не напишем.
4x-12x+11+6=0
-8x=-17
x=2.125