у нас получилось выражение из трех слагаемых, в каждом из которых присутствует общий множитель (2а – 3), который мы вынесем за скобку;
= (5b 2 – 4b + 3) • (2a – 3) .
Рассмотрим разложение многочлена на множители группировки ещё на одном примере:
15a 2 – 13a – 20 =
представим слагаемое –13а , как – 25а + 12а ;
= 15a 2 – 25а + 12а – 20 =
сгруппируем слагаемые скобками;
= (15a 2 – 25а) + (12а – 20) =
вынесем за скобки общий множитель первой, а затем и второй группы;
= 5a • (3a – 5) + 4 • (3а – 5) =
у нас получилось выражение из двух слагаемых, в каждом из которых присутствует общий множитель (3а – 5), который мы вынесем за скобку;
= (5a + 4) • (3a – 5) .
Владимир
28.09.2020
Логарифмические уравнения. Продолжаем рассматривать задачи из части В ЕГЭ по математике. Мы с вами уже рассмотрели решения некоторых уравнений в статьях«Тригонометрические уравнения», «Решение рациональных уравнений». В этой статье рассмотрим логарифмические уравнения. Сразу скажу, что никаких сложных преобразований при решении таких уравнений на ЕГЭ не будет. Они просты.
Достаточно знать и понимать основное логарифмическое тождество, знать свойства логарифма. Обратите внимание на то, то после решения ОБЯЗАТЕЛЬНО нужно сделать проверку — подставить полученное значение в исходное уравнение и вычислить, в итоге должно получиться верное равенство.
=================