. Её область определения – это множество значений «икс», для которых существуют значения «игреков». Рассмотрим условный пример:
Область определения функции
Область определения данной функции представляет собой объединение промежутков:
Объяснение:
Область определения функции, в которой есть дробь
Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции.
Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби:
Пример 1
Найти область определения функции
Решение: в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:
Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции. Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.
ответ: область определения:
Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Напоминаю, что значок обратного слеша в математике обозначает логическое вычитание, а фигурные скобки – множество. ответ можно равносильно записать в виде объединения трёх интервалов:
Кому как нравится.
В точках функция терпит бесконечные разрывы, а прямые, заданные уравнениями являются вертикальными асимптотами для графика данной функции. Впрочем, это уже немного другая тема, и далее я на этом не буду особо заострять внимание.
Пример 2
Найти область определения функции
Задание, по существу, устное и многие из вас практически сразу найдут область определения. ответ в конце урока.
Всегда ли дробь будет «нехорошей»? Нет. Например, функция определена на всей числовой оси. Какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен: . Таким образом, область определения данной функции: .
1) (x + 2)(x² - 2x + 4) - x(x - 3)(x + 3) - 42 =
х³ - 2х + 4х + 2х² - 4х + 8 - х³ - 3х² + 3х² + 9х - 42 =
х³ - х³ + 2х² - 3х² + 3х² - 2х + 4х - 4х + 9х + 8 - 42 =
2х² + 7х - 34
2) (x - 3)(x² + 3x + 9) - x(x²- 16) + 21=
х³ + 3х² + 9х - 3х² - 9х - 27 - х³ + 16х + 21 =
х³ - х³ + 3х² - 3х² + 9х - 9х + 16х - 27 + 21 =
16х - 6
3) (2x - 1)(4x² + 2x + 1)-23 - 4x(2x² + 3) =
8х³ + 4х² + 2х - 4х² - 2х - 1 - 23 - 8х³ - 12х =
8х³ - 8х³ + 4х² - 4х² + 2х - 2х - 12х - 1 - 23 =
-12х - 24
4) 16x(4x² - 5) + 17 - (4x + 1)(16x² - 4x + 1) =
64х³ - 80х + 17 - 64х³ - (16х + 4х + 16х² - 4х + 1) =
64х³ - 80х + 17 - 64х³ - 16х - 4х - 16х² + 4х - 1 =
64х³ - 64х³ - 16х² - 80х - 16х - 4х + 4х + 17 - 1 =
- 16х² - 96х + 16
Поделитесь своими знаниями, ответьте на вопрос:
Решите систему уравнений 3x-2y=4, y+2x=5 способом подстановки и 3x+4y=14, 5x+2y=14 способом сложения