x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.Поделитесь своими знаниями, ответьте на вопрос:
Решите: какой цифрой закончится значение выражения(n-натуральное число) 1)4^100 2)3^300 3)3^n+2*7^n с объяснением(желательо)
так, степени числа 4:
4 в степени 1 = 4
4 в степени 2 = 16
4 в степени 3 = 64
4 в степени 4 = 256
4 в степени 5 = 1024
вывод: четные степени числа 4 оканчиваются цифрой 6
степени числа 3:
3 в степени 1 = 3
3 в степени 2 = 9
3 в степени 3 = 27
3 в степени 4 = 81
3 в степени 5 = 243
3 в степени 6 = 729
возможны варианты: 3, 9, 7, 1
100 кратно 4, потому логично предположить,
что здесь ответ: цифра 1...
можно записать и так: 3^100 = (3^2)^50 = 9^50
9 в степени 1 = 9
9 в степени 2 = 81
9 в степени 3 = 729
9 в степени 4 = 6561
вывод: четные степени числа 9 оканчиваются цифрой 1
предположение было верно)))
степени числа 7:
7 в степени 1 = 7
7 в степени 2 = 49
7 в степени 3 = 343
7 в степени 4 = 2401
7 в степени 5 = 16807
7 в степени 6 = ___9
возможны варианты: 7, 9, 3, 1
если умножить на 2, то возможны варианты: 4, 8, 6, 2
для степеней тройки возможны варианты: 3, 9, 7, 1
для суммы возможны варианты: 7, 3
n=1 (3+14=17)
n=2 (9+98=107)
n=3 (27+686=713)...