insan10
?>

Решить уравнение: x в степени восемь +1=0

Алгебра

Ответы

Kalmikova1666
Интересная задачка. Давай попробуем.
x^{8} + 1 = 0 \\ x^8 = -1.
Запишем это ещё нагляднее:
({x^4})^2 = -1.
Известно, что квадрат всегда положителен, если речь идёт о вещественных числах. Поэтому вещественных решений нет.

Однако, есть ещё такая штука как комплексные числа, которые допускают отрицательность квадрата (там есть число i : i^2 = -1). Таким образом, имеем, извлекая корень:
x = \sqrt[8]{-1}.
На самом деле, это восемь различных комплексных чисел, лежат они на окружности, равноудалённо друг от друга. Записать их можно как
x_k = \cos(\frac{2\pi k}{8}) + i \sin(\frac{2\pi k}{8}).

ответ: вещественных решений нет, комплексные написаны строчкой выше.
Нана_Елена
Y=-x²-6x-7     y=x+3
-x²-6x-7=x+3
x²+7x+10=0    D=9
x₁=-5     x₂=-2
S=₋₂∫⁻⁵(-x²-6x-7-x-3)dx=₋₂∫⁻⁵(-x²-7x-10)dx==(-x³/3-3,5x²-10x) ₋₂|⁻⁵=                              =(-(-5)³/3-3,5*(-5)²-10*(-5)-(-(-2)³/3-3,5*(-2)²-10*(-2)))=
=(125/3-87,5+50-(8/3-14+20))=(125/3-37,5-8/3-6)=(43,5-117/3)=(117/3-87/2)=              =(117*2-87*3)/6=(234-261)/6=(-27/6)=-9/2=|-4,5|=4,5.
ответ: S=4,5 кв. ед.

y=-x²-6x-11    y=-x+3
-x²+6x-11=-x+3
x²-7x+14=0   D=-7 ⇒ уравнение не имеет действительных корней  ⇒
графики y=-x²-6x-11 и y=-x+3 не пересекаются.
kozhevniks
Y=-x²-6x-7     y=x+3
-x²-6x-7=x+3
x²+7x+10=0    D=9
x₁=-5     x₂=-2
S=₋₂∫⁻⁵(-x²-6x-7-x-3)dx=₋₂∫⁻⁵(-x²-7x-10)dx==(-x³/3-3,5x²-10x) ₋₂|⁻⁵=                              =(-(-5)³/3-3,5*(-5)²-10*(-5)-(-(-2)³/3-3,5*(-2)²-10*(-2)))=
=(125/3-87,5+50-(8/3-14+20))=(125/3-37,5-8/3-6)=(43,5-117/3)=(117/3-87/2)=              =(117*2-87*3)/6=(234-261)/6=(-27/6)=-9/2=|-4,5|=4,5.
ответ: S=4,5 кв. ед.

y=-x²-6x-11    y=-x+3
-x²+6x-11=-x+3
x²-7x+14=0   D=-7 ⇒ уравнение не имеет действительных корней  ⇒
графики y=-x²-6x-11 и y=-x+3 не пересекаются.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить уравнение: x в степени восемь +1=0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

enot1975
olgavbaranova
gnsnodir5001
stmr29
Тимур
moisalexx7
Николаев
info664
evlampin
okykovtun31
Igor1406
Nasteona1994
bruise6
pavpe4198
stasyan