возможно 5 случая:
1) допустим, х-отрицательное, а y положительноетогда сумма (3x+4y) будет отрицательной, а произведение (3x+4y)(3x+4y) будет положительно.(тоже самое будет, если наоборот y-отрицательное, а x положительное)
2) допустим, х и y отрицательные,тогда сумма (3x+4y) будет положительна и произведение (3x+4y)(3x+4y) тоже будет положительно.
3) допустим, х и y положительные, тогда сумма (3x+4y) будет положительна и произведение (3x+4y)(3x+4y) соответственно будет положительно
4) допустим любая из переменных x или y=0, тогда независимо от неравной нулю переменной произведение (3x+4y)(3x+4y) будет положительно
и 5) самый простой случай, когда и х и y =0, тогда и сумма и произведение будут равны нулю, т.е. неотрицательны.
во всех 4х случаях выходит, что выражение неотрицательно, ч.т.д.
возможно 5 случая:
1) допустим, х-отрицательное, а y положительноетогда сумма (3x+4y) будет отрицательной, а произведение (3x+4y)(3x+4y) будет положительно.(тоже самое будет, если наоборот y-отрицательное, а x положительное)
2) допустим, х и y отрицательные,тогда сумма (3x+4y) будет положительна и произведение (3x+4y)(3x+4y) тоже будет положительно.
3) допустим, х и y положительные, тогда сумма (3x+4y) будет положительна и произведение (3x+4y)(3x+4y) соответственно будет положительно
4) допустим любая из переменных x или y=0, тогда независимо от неравной нулю переменной произведение (3x+4y)(3x+4y) будет положительно
и 5) самый простой случай, когда и х и y =0, тогда и сумма и произведение будут равны нулю, т.е. неотрицательны.
во всех 4х случаях выходит, что выражение неотрицательно, ч.т.д.
Поделитесь своими знаниями, ответьте на вопрос:
Впроизвольном четырехугольнике найти точку, для которой сумма векторов, идущих из этой точки к вершинам четырехугольника равна 0. единственна ли такая точка?
Тогда по условию сумма векторов OA + OB + OC + OD = 0
Возьмем произвольную точку X в плоскости четырехугоьлника
Справедливы векторные равенства:
XA = XO + OA
XB = XO + OB
XC = XO + OC
XD = XO + OD
XA + XB + XC + XD = 4XO + OA + OB + OC + OD
Отсюда следует:
XA + XB + XC + XD = 4XO
Тогда вектор XO = 1/4 (XA + XB + XC + XD)
Отсюда находится точка О
(берем любую точку X, строим XA, XB, XC, XD, находим XO, и откладываем его из точки X - попадаем в искомую точку О).
Положим существует точка O1 обладающая теми же свойствами
Тогда такими же рассуждениями получаем, что
XO1 = 1/4 (XA + XB + XC + XD)
Отсюда XO = XO1, но это значит что O = O1 (т.е. это та же самая точка, значит она единственна)