3^n+2 оканчивается на 9, так как степени 3 это 3, 9, 7, 1 и повторяются заново в этом выражении n+2, 2 означает что число заканчивается на 9, а степени 7 это 7, 9, 3, 1 и заново то есть число 37^n заканчивается на 1. Умножаем 1 на 9 выражение заканчивается на 9 ответ 9
Ye.Vadim
05.06.2021
Известно, что плотность ρ равна отношению массы к объёму ρ=m/v. Тогда плотность сплава через плотности компонентов ρ1 и ρ2 и их объёмы v1 и v2 равна ρ=(ρ1*v1+ρ2*v2)/(v1+v2)=(19300*v1+10500*v2)/1=14000. Видно, что при равных объёмах v1=v2 плотность была бы равна 0,5*(ρ1+ρ2)=0,5*(19300+10500)=14900 кг/м³. Так как данная плотность сплава меньше, то содержание золота v1 меньше половины. При v1=0,45 и при v2=0,55 имеем ρ=(19300*v1+10500*v2)/1=14500 кг/м³. Уменьшаем до v1=0,4 и v2=0,6 имеем ρ=(19300*v1+10500*v2)/1=14060 кг/м³. Уменьшаем до v1=0,393 и v2=0,607 имеем ρ=(19300*v1+10500*v2)/1=14000 кг/м³.
ответ: v1=0,393=39,3% для золота и v2=0,607=60,7% для серебра.
vrn3314
05.06.2021
Известно, что плотность ρ равна отношению массы к объёму ρ=m/v. Тогда плотность сплава через плотности компонентов ρ1 и ρ2 и их объёмы v1 и v2 равна ρ=(ρ1*v1+ρ2*v2)/(v1+v2)=(19300*v1+10500*v2)/1=14000. Видно, что при равных объёмах v1=v2 плотность была бы равна 0,5*(ρ1+ρ2)=0,5*(19300+10500)=14900 кг/м³. Так как данная плотность сплава меньше, то содержание золота v1 меньше половины. При v1=0,45 и при v2=0,55 имеем ρ=(19300*v1+10500*v2)/1=14500 кг/м³. Уменьшаем до v1=0,4 и v2=0,6 имеем ρ=(19300*v1+10500*v2)/1=14060 кг/м³. Уменьшаем до v1=0,393 и v2=0,607 имеем ρ=(19300*v1+10500*v2)/1=14000 кг/м³.
ответ: v1=0,393=39,3% для золота и v2=0,607=60,7% для серебра.
ответ 9