skorpion7228528
?>

Y=2x-15 a) определить значение у, если х=-3, 5 б) определить значение х, при котором у =-5 в) проходит ли график функции через. k(10; -5)?

Алгебра

Ответы

ledlenta751
Надеюсь что правильно
Y=2x-15 a) определить значение у, если х=-3,5 б) определить значение х, при котором у =-5 в) проходи
Олег2014

Размах ряда чисел - это разность между наибольшим и наименьшим из этих чисел.

Среднее арифметическое ряда чисел - это отношение суммы этих чисел на число слагаемых.

Мода ряда чисел - это число, которое встречается в этом ряду чаще других.

Медиана ряда чисел - это число, стоящее посередине упорядоченного по возрастанию ряда чисел (в случае, если количество чисел нечетное).

Медиана ряда чисел - это полусумма двух стоящих посередине чисел упорядоченного по возрастанию ряда (в случае, если количество чисел четное).

Задание 1.

Размах: 47-25=22;

Среднее арифметическое: \frac{39+33+45+25+33+40+47+38+34+33+40+44+45+32+27}{15}= \frac{555}{15}=37

15

39+33+45+25+33+40+47+38+34+33+40+44+45+32+27

=

15

555

=37 ;

Мода: 33;

Медиана: 38.

Задание 2.

Размах: 44-30=14;

Среднее арифметическое: \frac{36+30+35+36+36+38+40+41+44+43+36+41}{12}= \frac{456}{12}=38

12

36+30+35+36+36+38+40+41+44+43+36+41

=

12

456

=38 ;

Мода: 36;

Медиана: \frac{38+40}{2}=39

2

38+40

=39 .

Задание 3.

Размах: 46-24=22;

Среднее арифметическое: \frac{34+24+39+36+34+39+38+46+38+34+46+41+43+40}{14}= \frac{532}{14}=38

14

34+24+39+36+34+39+38+46+38+34+46+41+43+40

=

14

532

=38 ;

Мода: 34;

Медиана: \frac{38+46}{2}=42

2

38+46

=42 .

Задание 4.

Размах: 58-24=34;

Среднее арифметическое: \frac{39+45+35+24+35+38+58+34+38+35+40+42+45+36+56}{15}= \frac{600}{15}=40

15

39+45+35+24+35+38+58+34+38+35+40+42+45+36+56

=

15

600

=40 ;

Мода: 35;

Медиана: 34.

anyakru94

Таблица точек

 x y

-3.0 -18

-2.5 -8.1

-2.0 -2

-1.5 1.1

-1.0 2

-0.5 1.4

0 0

0.5 -1.4

1.0 -2

1.5 -1.1

2.0 2

2.5 8.1

3.0 18

 Точка пересечения графика функции с осью координат Y:  

График пересекает ось Y, когда x равняется 0: подставляем x=0 в x³-3x.

у =0³-3*0 = 0,

Результат: y=0. Точка: (0; 0.

Точки пересечения графика функции с осью координат X:  

График функции пересекает ось X при y=0, значит, нам надо решить уравнение:  

x³-3x = 0

Решаем это уравнение и его корни будут точками пересечения с X:

x (х²-3) = 0,

х1 = 0,  х2,3 = +-√3.

Результат: y=0. Точки: (0; -√3), (0; 0) и (0; √3).

Экстремумы функции:  

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:  

y'=3x² – 3 = 0

Решаем это уравнение и его корни будут экстремумами:  

3(х²-1) = 0,

х1 = 1,  х2  = -1.

Результат: y’=0. Точки: (-1; 2) и (1; -2). Это критические точки.

Интервалы возрастания и убывания функции:  

Найдем значения производной между критическими точками:  

x = -2 -1 0          1             2

y' = 9 0 -3          0               9.  

• Минимум функции в точке: х = -1,

• Максимум функции в точке: х = 1.

• Возрастает на промежутках: (-∞; -1) U (1; ∞)  

• Убывает на промежутке: (-1; 1)  

Точки перегибов графика функции:  

Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:  

y'' = 6x  = 0

Отсюда точка перегиба х = 0

Точка: (0; 0).

Интервалы выпуклости, вогнутости:  

Находим знаки второй производной на промежутках (-∞; 1) и (1; +∞).

                             х =     -1        0         1

                             y'' =    -6        0          6.

Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.

• Вогнутая на промежутках: (0; ∞),

• Выпуклая на промежутках: (-∞; 0)  

Вертикальные асимптоты – нет.  

Горизонтальные асимптоты графика функции:  

Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:  

• lim x3-3x, x->+∞ = ∞, значит, горизонтальной асимптоты справа не существует

• lim x3-3x, x->-∞ = -∞, значит, горизонтальной асимптоты слева не существует

Наклонные асимптоты графика функции:  

Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:  

• lim x3-3x/x, x->+oo = oo, значит, наклонной асимптоты справа не существует.

• lim x3-3x/x, x->-oo = oo, значит, наклонной асимптоты слева не существует.

Четность и нечетность функции:  

Проверим функцию -  четна или нечетна с соотношений f(-x)=f(x) и f(-x)=-f(x). Итак, проверяем:  

• (-x3)-3(-x) =  -x3+3x   нет,

• (-x3)-3(-x) = -(x3-3x) – да, значит, функция является нечётной.


Решить. если можно, то подробно

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Y=2x-15 a) определить значение у, если х=-3, 5 б) определить значение х, при котором у =-5 в) проходит ли график функции через. k(10; -5)?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ikavto6
yuliyaminullina
sve34166163
vinokurova88251
patersimon1
TatiyanaBe20135263
Avdimov5
ludmila-malev280
char40
lbondareva
notka19746
Татьяна-Мария
Irina_Chernyaev532
VladimirBorisovich
mashumi2170