sunrise
?>

Сократите дробь 3х+9у/15х+45у. можно фото решение?

Алгебра

Ответы

igorshevkun
(3х+9у) / (15х+45у) = 3(х+3у) / 15(х+3у) = 1/5
Лоскутова
3х + 9у/15х+45у= 3(х+3у)/15(х+3у)=3/15=1/3
fednik3337923

Рассмотрим числовую последовательность в которой члены - это количество камешков в каждом уголке, т.е.

а1=1

а2=3=1+2=а1+2

а3=5=3+2=а2+2

а4=7=5+2=а3+2

Замечаем, что данные числа образуют арифметическую прогрессию с разность d=2 (каждый следующий член получен из предыдущего увеличением на одно и тоже число - 2).

По формуле n-го члена арифметической прогрессии

аn=а1+(n-1)*d

находим, что а100=1+(100-1)*2=1+99*2=1+198=199, т.е. в сотом уголке - 199 камешков.

А, теперь, используя формулу для нахождения суммы первых n членов арифметической прогрессии

Sn=((a1+an)*n)/2

получаем, что в первых 100 уголках будет камешков

S100=((1+199)*100)/2=(200*100)/2=100*100=10000

ответ: 10000

Назаров588

рассмотрим возможные остатки при делении n на 3 :

  A = n(n² + 5)

1)  пусть n = 3k , тогда А =  3k(9k² + 5) ;  если к кратно 2 , то 3k

кратно 6 и  утверждение доказано , а если к  нечетно , то    

 9k² - нечетно , но тогда   9k² + 5 - четно ( как сумма двух

нечетных чисел )  и значит  3k(9k² + 5)   кратно  6

2) пусть n = 3k +1  ⇒ A = ( 3k +1)·(9k² + 6k + 6) =    

3 ·( 3k +1)·(3k²+2k+2)  ;  если   к  четно , то 3k²  четно и значит

(3k²+2k+2)  четно ⇒ А кратно 6  ,  если   к  нечетно , то            

 ( 3k +1 ) - четно ⇒ А кратно 6

3)  пусть n = 3k+2 ⇒ A = (3k+2)( 9k² + 6k + 9) = 3·(3k+2)·(3k²+2k+3)

;  если   k  четно , то ( 3к+2)  четно ⇒ А кратно 6 ,  

 если к  нечетно , то  3k²   нечетно ⇒ 3к² +3  четно ⇒

(3k²+2k+3)    четно ⇒ А кратно 6

Итак , во всех возможных вариантах А  кратно 6

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сократите дробь 3х+9у/15х+45у. можно фото решение?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

AndreevManaeva
kapi30
kzhgutova
pavlino-mkr
Александровна1685
seleznev1980
forosrozhkov
Lerkinm
Andreeva
upmoskovskiy
Romanovich1658
nekrasovaolga27
euzdenova
Элизбарян
A2017