myliar21585356
?>

8в степени 2 целых одна третья : 81 в степени 0.75

Алгебра

Ответы

Ivan1568
8 в степени 2 целых одна третья= корень третьей степени из 8^7
81 в степени 0,75= корень четвертой степени из 81^3
^ - знак степени
platonovkosty
(2^(3*7)/3)/(3^(4*3)/4)=2^7/3^3 = 128/27
drappaeva68
3. sin^2 x + 6sin x cos x + 8 cos^2 x = 0/cos²x
tg²x+6tgx+8=0
tgx=a
a²+6a+8=0
a1+a2=-6 U a1*a2=8
a1=-4⇒tgx=-4⇒x=-arctg4+πk,k∈z
a2=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z

5. 2cos^2 x – 11sin 2x = 12
2cos²x-22sinxcosx-12sin²x-12cos²x=0/cos²x
12tg²x+22tgx+10=0
6tg²x+11tgx+5=0
tgx=a
6a²+11a+5=0
D=121-120=1
a1=(-11-1)/12=-1⇒tgx=-1⇒x=-π/4+πn,n∈z
a2=(-11+1)/12=-5/6⇒tgx=-5/6⇒x=-arctg5/6+πk,k∈z

6. 2sin^2 x – 3sin 2x – 4cos 2x = 4
2sin²x-6sinxcosx-4cos²x+4sin²x-4sin²x-4cos²x=0/cos²x
2tg²x-6tgx-8=0
tg²x-3tgx-4=0
tgx=a
a²-3a-4=0
a1+a2=3 U a1*a2=-4
a1=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
a2=4⇒tgx=4⇒x=arctg4+πn,n∈z
artemkolchanov24
Исследовать функцию:
у(x)=x^3/3-x^2+6
1. Область определения функции (-бесконечность;бесконечность)
2. Множество значений функции (-бесконечность;бесконечность)
3. Проверим, является ли функция четной или не четной?
у(x)=x^3/3-x^2+6
у(-x)=(-x)^3/3-(-x)^2+6=-x^3/3-x^2+6, так как у(x) не=у(-x) и у(-x) не=-у(x), то данная функция не является ни четной ни не четной.
4. Найдем координаты точек пересечения графика функции с осями координат:
а) с осью ОХ: у=0, x^3/3-x^2+6=0, данное уравнение не имеет рационального корня, а корень принадлежит промежутку (-2;-1)
б) с осью ОУ: х=0, тогда у=6. Следовательно график функции пересекает ось ординат в точке (0;6)
5) Найдем точки экстремума функции и промежутки возрастание и убывания:
у'(x)=x^2-2x; f'(x)=0
x^2-2x=0
x1=0
x2=2. Получили две стационарные точки, проверим их на экстремум:
Так как на промежутках (-бесконечность;0) и (2; бесконечность) у'(x)>0, то на этих промежутках функция возрастает.
Так как на промежутке (0;2) у'(x)<0, то на этом промежутке функция убывает.
Так как при переходе через точку х=0 производная меняет свой знак с + на - ,то в этой точке функция имеет максимум у(0)=0-0+6=6
Так как при переходе через точку х=2 производная меняет свой знак с - на + то в этой точке функция имеет минимуму у(2)=8/3-4+6=14/3
6. Найдем точки перегиба функции и промежутки выпуклости:
y"(x)=2x-2; y"(x)=0
2x-2=0
x=1
Так как на промежутке (-бесконечность; 1) y"(x)<0, то на этом промежутке нрафик функци направлен выпуклостью вверх.
Так как на промежутке (1;бесконечность) y"(x)>0, то на этом промежутке график функции направлен выпуклотью вниз
Так как при переходе через точку х=1 вторая производная меняет свой знак, то точка х=1 является точой перегиба. y(1)=1/3-1+6=16/3
7. проверим имеет данная функция асимптоты:
а) вертикальные
Так как точек разрыва функция не имеет, то она не имеет вертикальных асимптот.
б) наклонные вида у=kx+b
k=lim y(x)/x=lim((x^3/3-x^2+6)/x)= бесконечность 
Так как данный предел бесконечен, то график не имеет наклонных асимптот
8. все строй график ДУмаю это у меня у самогобыла акая проблема но вот писал

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

8в степени 2 целых одна третья : 81 в степени 0.75
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

AkimovaI1608
des-32463
punchf
Olga-Rauisovna
Vetroff-11
Larisa Bulgakova
impulsmc715
lokos201272
GALINAMTO
Advantage9111
gladkihvv
Karpova
galinaobraz
lepekhov4011
КОРМИЛИЦЫНА