Уравнение любой касательной к любому графику находится по формуле: Где производная функции в данной точке. А точка касания по иксу.
1) Поначалу у функции мы должны найти производную общего типа этой функции. Это степенная функция, а производная любой степенной функции находится следующей формулой: - где n это степень. В нашем случае: Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2) Опять же, найдем производную Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы. Если что-то не правильно, то это значит что вы не правильно написали условие.
lpcck2212
03.09.2020
А) x^3 + x^2 + x + 2 - на множители не раскладывается. Уравнение x^3 + x^2 + x + 2 = 0 имеет один иррациональный корень. f(-2) = -8 + 4 - 2 + 2 = -4 < 0 f(-1) = -1 + 1 - 1 + 2 = 1 > 0 x0 ∈ (-2; -1) Можно найти примерно f(-1,4) = -2,744 + 1,96 - 1,4 + 2 = -0,184 < 0 f(-1,3) = -2,197 + 1,69 - 1,3 + 2 = 0,193 > 0 x0 ∈ (-1,4; -1,3) Можно уточнить f(-1,35) = 0,012125 > 0 f(-1,36) = -0,025856 < 0 x0 ∈ (-1,36; -1,35) f(-1,353) ~ 0,0008 Точность достаточна. Остальные два корня - комплексные. Я думаю, что это ошибка в задаче, должно было быть x^3 + x^2 + x + 1 = (x + 1)(x^2 + 1)
f(x) = x² + 2x + 3
f(z + 2) = (z + 2)² + 2(z + 2) + 3 = z² + 4z + 4 + 2z + 4 + 3 = z² + 6z + 11
f(z - 2) = (z - 2)² + 2(z - 2) + 3 = z² - 4z + 4 + 2z - 4 + 3 = z² - 2z + 3
f(z + 2) = f(z - 2) + 4
z² + 6z + 11 = z² - 2z + 3 + 4
z² + 6z - z² + 2z = 7 - 11
8z = - 4
z = - 0,5