В решении.
Объяснение:
2) Пусть аn есть арифметическая прогрессия. Если а1=-10 и а3=-4, с характеристического свойства найдите а2. Определите значение девятого члена прогрессии.
а) а₁ = -10;
а₃ = -4;
а₂ = ?
а₂ = (а₁ + а₃)/2
а₂ = (-10 - 4)/2
а₂ = -14/2
а₂ = -7;
б) a₉ = ?
an = a₁ + d(n - 1);
а₉ = а₁ + d(n - 1);
Найти d:
d = a₂ - a₁;
d = -7 - (-10)
d = -7 + 10
d = 3;
а₉ = а₁ + d(n - 1);
а₉ = (-10) + 3(9 - 1)
а₉ = (-10) + 24
а₉ = 14.
3) в арифметической прогрессии (аn) известно, что d=2,a1=5. Найти s13.
а₁ = 5;
d = 2;
S₁₃ = ?
Формула:
Sn = ((2a₁ + d(n - 1))/2 * n
S₁₃ = (2 * 5 + 2 * 12)/2 * 13
S₁₃ = (10 + 24)/2 * 13
S₁₃ = 17 * 13
S₁₃ = 221.
f(x)=e^6x-x^2+5
Функція буде зростати на відрізках, де її похідна має додатні значення.
Знаходимо похідну:
f'(x) = 6e^6x-2x ; ця функція неперервна.
Знайдемо точки екстремуму через похідну другого порядку:
f''(x) = 36e^6x-2
36e^6x-2 = 0
18e^6x = 1
6x = ln(1/18)
x = ln(1/18)/6
Дізнаємось знак похідної на точці екстремума:
6e^(6(ln(1/18)/6)) - 2(ln(1/18)/6) = 6e^(ln(1/18)) - (ln(1/18)/3) = 6*1/18 - (ln(1/18)/3) = 1/3 - (ln(1/18)/3) ; ln(1/18) має відємне значення, тому загальний вираз буде додатнім.
Розглянемо похідну на 2 довільних точках по обидві сторони від точки екстремума:
х=0
f'(x) = 6e^(6*0)-2*0 = 6е - значення додатнє
х=-10
f'(x) = 6e^(6*(-10))-2*(-10) = 6e^(-60)+20 = 6/e^60+20 - значення також додатнє
Отже, функція зростає на всій області визначення, крім точки ln(1/18)/6
Поделитесь своими знаниями, ответьте на вопрос:
Зависимость между x и y выражена формулой у= 4х-1 делёная на 3 .найдите значение х, если у=9