ответ:Решение методом подстановки.
1) (-y+5;y), y∈ R
{ x = − y + 5
y = − x + 5
{ x = − y + 5
y = − ( − y + 5 ) + 5
{ x = − y + 5
0 = 0
2) решений нет (прямые параллельны).
{ 2 x + y = 8
10 x + 5 y = 10
{ y = − 2 x + 8
10 x + 5 y = 10
--
{ y = − 2 x+ 8
10 x +
5( − 2x + 8 ) = 10
{ y = − 2 x + 8
30 = 0
3)y=-1/3;x=1 2/3
{ y − x = − 2
y + 2 x = 3
---
{ y = x − 2
y + 2 x = 3
-
{ y = x − 2
( x − 2 ) + 2 x = 3
{ y =x − 2
3 x − 5 = 0
{ y = x − 2
x = 5 /3
{ y = − 1 /3
x = 5 /3
4)y = 4 ; x = − 1.
{ y + x = 3
− y + 2 x + 6 = 0
{ y = − x + 3
−y + 2 x + 6 = 0
{ y = − x + 3
− ( − x + 3 ) + 2 x + 6 = 0
{ y = − x + 3
3 x + 3 = 0
{ y = − x + 3
x = − 1
{ y = 4
x = − 1
ЭТО ВСЁ МЕТОД ПОДСТАНОВКИ!
ответ: 1) -1; 2) 1.
Объяснение:
1) При x⇒0 выражение в скобках представляет собой неопределённость вида ∞-∞. Приводя обе дроби к общему знаменателю, получаем в скобках выражение -sin²(x)/[x*(x+sin²(x))]=-sin(x)/x*sin(x)/[x+sin²(x)]. Предел первого множителя есть ни что иное, как взятый со знаком "минус" первый замечательный предел, поэтому предел этого множителя равен -1. Ко второму множителю sin(x)/[x+sin²(x)] применим правило Лопиталя. Находя производные числителя и знаменателя, получаем выражение cos(x)/[1+2*sin(x)*cos(x)]=cos(x)/[1+sin(2*x)]. Предел этого выражения при x⇒0 равен 1, поэтому искомый предел равен -1*1=-1.
2) Выражение, предел которого нужно найти, при x⇒+0 представляет собой неопределённость вида ∞⁰. Так как при x⇒0 бесконечно малые величины sin(x) и x эквивалентны, то при вычислении предела можно заменить одну на другую. В данном случае заменим sin(x) на x, и тогда выражение, предел которого нужно найти, примет вид y=(1/x)ˣ. Взяв натуральный логарифм от этого выражения, получим выражение z=x*ln(1/x)=ln(1/x)/[1/x]. Полагая теперь 1/x=t, получим выражение z=ln(t)/t. Так как при x⇒0+ t⇒∞, то это выражение представляет собой неопределённость вида ∞/∞, для раскрытия которой применим правило Лопиталя. Производная числителя [ln(t)]'=1/t, производная знаменателя t'=1, поэтому предел выражения lim[ln(t)/t]=lim(z) при t⇒∞ равен 0/1=0. А так как z=ln(y), то lim(z)=ln[lim(y)], откуда lim(y)=e^lim(z)=e^0=1.
Поделитесь своими знаниями, ответьте на вопрос:
(9а-6а³+2а²)-(15а+8)