Вертикальные асимптоты: x = 2
Горизонтальные асимптоты: y = 3
Нет наклонных асимптот
Объяснение:
Выясним, при каких значениях переменной функция 3 x + 1 x − 2 не определена. x = 2
Рассмотрим рациональную функцию
, где n - степень числителя, а m - степень знаменателя.
1. Если n < m , то ось x, y = 0 , является горизонтальной асимптотой.
2. Если n = m , то горизонтальной асимптотой является прямая 
Если n > m , то не существует горизонтальной асимптоты (только наклонная асимптота).
Найдем n и m
n = 1 ; m = 1
Поскольку n = m , горизонтальная асимптота является прямой
, где a = 3 и b = 1
y = 3
Наклонных асимптот нет, поскольку степень числителя меньше либо равна степени знаменателя.
Это множество всех асимптот.
Вертикальные асимптоты: x = 2
Горизонтальные асимптоты: y = 3
Нет наклонных асимптот
Как я поняла нужно решить 2 квадратных неравенства. Так?
Тогда решаем первое
х2-6х+9<=0
x2-6x+9=0
D=36-4*9=0, то есть корень 1
х=(6+0)/2=3
Значит графиком является парабола, пересекающая ось х в точке3, ветви вверх
Значит квадратный трехчлен нигде не будет <0, но так как нужно еще рассмотреть случай когда он=0, то решением будет точка 3
ответ: 3
2) -х2+12х-36>0 т.е.
(умножаем на -1) х2-12х+36=0
D=144-4*36=0, т.е одно решение
x=12/2=6 Квадратный трехчлен пересекает ось х в точке 6, ветви вниз
Т.е. нет точек когда он>0
ответ: Нет решения или решением является пустое множество
Поделитесь своими знаниями, ответьте на вопрос:
пусть координаты центра какие то (x;y) и обозначим ее О ,
тогда ОМ1 = OM2 так как оба радиусы
OM1 =√(x-7)^2+(y-7)^2
OM2 = √(x+2)^2+(y-4)^2
корни можно убрать так как равны
(x-7)^2+(y-7)^2 = (x+2)^2+(y-4)^2
x^2-14x+49+y^2-14y+49 = x^2+4x+4 + y^2 - 8y + 16
-14x+49-14y+49=4x+4-8y+16
-18x- 6y = -78
теперь решаем это уравнение со вторым 2x-y-2=0 так как они имеют точки пересечения
{18x+6y=78
{2x-y=2
{y=2x-2
{ 18x+6(2x-2)= 78
18x+12x-12=78
30x = 90
x=3
y=4
то есть это и будут центры теперь найдем радиусы так
OM1 =R
R^2=(3-7)^2+(4-7)^2 = 16+9 = 25
и уравнение
(x-3)^2+(y-4)^2=25