Даны координаты вершин треугольника ABC:
A(20;5) B(-4;12) C(-8;9).
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √625 = 25.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √25 = 5.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √800 ≈ 28,28427.
Площадь треугольника ABC
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 50.
Длины высоты равна АН = 2S/ВС = 2*50/5 = 20.
Основание медианы АМ (точка пересечения медианы со стороной ВС).
М(хМ; уМ) Хв+Хс Ув+Ус х у
2 2 М -6 10,5.
Длина медианы АМ равна √(-6-20)² + (10,5-5)²) = √706,25 ≈ 26,57536.
Длины биссектрисы АК равна:
АК = √(АВ*АС*((АВ+АС)²-ВС²)) = 26,47415.
АВ+АС
Косинус угла В равен:
cos В = АВ²+ВС²-АС² = -0,6
2*АВ*ВС
B = 2,2143 радиан.
B = 126,8699 градусов.
В планиметрии все фигуры, которые рассматривались при доказательстве каждой теоремы или при решении задач, располагались на плоскости (на листе бумаги или на доске и т. д.). Таким образом, мы имели дело только с одной плоскостью, и все точки, линии, углы, вообще геометрические фигуры лежали только на ней.
В курсе стереометрии нам предстоит рассматривать такие случаи, когда не все точки, линии и углы данной или данных фигур будут располагаться на одной плоскости. Будем считать, например, поверхность стола моделью плоскости Р; возьмем куб и поставим его одной гранью на стол. Легко видеть, что в данном кубе:
1) имеются точки, ребра, углы, лежащие на данной плоскости Р (на столе);
2) имеются точки, которые находятся вне плоскости Р;
3) имеются ребра, пересекающие плоскость Р;
4) имеются углы, находящиеся вне плоскости Р;
5) имеются шесть граней, являющиеся моделями шести различных плоскостей.
Вывод. Плоскости могут вступать во взаимодействие с другими элементами фигур и друг с другом.
Отсюда вытекает необходимость изучать различные случаи комбинаций плоскостей между собой, комбинации плоскостей с линиями и другими геометрическими объектами. Это изучение является одной из задач курса стереометрии. В первую очередь надо выяснить основные свойства плоскостей по отношению друг к другу, к точкам и прямым.
Введем обозначения:
точки – А, В, С и т. д.
прямые – a, b, с и т. д. или (АВ, СD и т. д.)
плоскости – α, β, γ и т. д.
Поделитесь своими знаниями, ответьте на вопрос:
Варифметической прогрессии известно что a5 =26; a11=36. найдите s15-?
ответ: 465.