Правильное условие смотри в приложении.
2)
Площадь такой клумбы будет равна квадрату её стороны.
S = (a м)² = a² м²
3)
4(2-1,5x)-3(x-2) = 4·2-4·1,5x-3x-3·(-2) = 14-9x
При x = -0,7:
14-9x = 14-9·(-0,7) = 14+6,3 = 20,3
4)
5a-(7-2(3-a)-3) = 5a-(7-2·3-2·(-a)-3) = 5a-(2a-2) = 5a-2a+2 = 3a+2
5)
За 8 билетов по а руб. каждый, нужно заплатить a·8 руб. Остальные 15-8=7 билетов стоят по a+100 руб. Значит, за них нужно заплатить (a+100)·7 руб.
Тогда P = 8a + 7(a+100) = 8a+7a+700 = 15a+700 руб.
ответы:
2) S = a² м²
3) 20,3
4) 3a+2
5) P = 15a+700 руб.
возрастает на (-∞;-2/9)∪(-2/9;0)∪(0;+∞); y=0 - наименьшее, y=28/729 - наибольшее
Объяснение:
Функция возрастает (убывает), когда производная положительна (отрицательна). Точки экстремумов - точки, в которых производная обращается в 0 и, проходя через которые, меняет свой знак: если точка максимума, то с "+" на "-", если минимума - с "-" на "+".
Найдём производную: f'(x)=9x^2+2x
Приравняем к 0: 9x^2+2x=0
x=0, x=-2/9
При x<-2/9 производная положительна (значит функция возрастает), при -2/9<x<0 производная положительна (значит функция тоже возрастает, и при этом x=-2/9 - НЕ точка экстремума), при x>0 производная тоже положительна, значит функция возрастает на D(y)
При x=-2/9: -8/729 + 4/81 = 28/729
При x=0: y=0
Поделитесь своими знаниями, ответьте на вопрос:
Ctg²x-4ctgx+3> 0 решить неравенство,
Ctg²x-4ctgx+3>0
ctgx = t
t² - 4t + 3 > 0
t² - 4t + 3 = 0
t₁ = 1
t₂ = 3
1 < t < 3
1) ctgx = 1
x₁ = π/4 + πk, k ∈ Z
2) ctgx = 3
x₂ = arcctg3 + πk, k ∈ Z
x < x₁
x > x₂
x < π/4 + πk, k ∈ Z
x > arcctg3 + πk, k ∈ Z