Bogdanov
?>

Первый член и разность арифметической прогрессии аn равны соответственно 2 и -3. найдите шестой член этой прогрессии

Алгебра

Ответы

sahar81305
A₁ = 2, d = -3
a₆ = a₁ + 5d = 2 + 5 * (-3) = 2 - 15 = -13
мария Кузив1393

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
Liliya_Ivanova
ДАНО
а - сторона первого квадрата.
b = a - 3 - ширина прямоугольника
S2 = S1 - 6 см² - площадь стала меньше.
НАЙТИ
а = ? -  сторона первого.
РЕШЕНИЕ
Площадь квадрата по формуле
S1 = a², 
Площадь прямоугольника по формуле
S2 = a*b = a*(a - 3)
Пишем уравнение
a² - (a²-3a) = 6
Раскрываем скобки.
a² - a² + 3a  = 6
Упрощаем
3*а = 6
Находим неизвестное - а
а = 6/3 = 2 - сторона квадрата (длина прямоугольника) 
Находим неизвестное - b
b = a - 3 = - 1 - длина прямоугольника.
ВЫВОД.
Получили отрицательное значение длины - b и это значит, что в условии всё наоборот и следует читать:
ЗАДАЧА.
К стороне квадрата ПРИБАВИЛИ 3 см и площадь УВЕЛИЧИЛАСЬ на 6 см.
Площадь квадрата -  S1 = 2*2 = 4 см²,
Площадь прямоугольника - S2 = 5*2 = 10 см² 
Проверка: 10 - 4 = 6 см² - разность - правильно.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Первый член и разность арифметической прогрессии аn равны соответственно 2 и -3. найдите шестой член этой прогрессии
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

re-art
Olegovna Volkov
Матфеопуло1006
gen218
akakne86
fygasika
proh-dorohova5244
pivenraisa
Salnikov1730
мария Кузив1393
Дмитрий_Евлампиев518
Построить график функции y=2cos2x+1
Yezhov_igor42
keldastrand
volodinnikolay19
Yurevich1243