Решение: Обозначим длину прямоугольника за х, а ширину за у, тогда согласно условия задачи зная формулу площади прямоугольника: S=a*b,где а-длина, а в -ширина прямоугольника, составим систему уравнений: х-у=3 (х-2)*(у+4)-х*у=8 х-2- площадь прямоугольника до измения длины и ширины, а (х-2*)*(у+4) -площадь прямоугольника при изменения его длины и ширины Решим систему уравнений, из первого уравнения х=3+у Подставим во второе уравнение данное х (3+у-2)*(у+4)-(3+у)*у=8 (1+у)*(у+4)-3у-у^2=8 у+y^2+4+4y-3y-y^2=8 2y=8-4 2y=4 y=2, тогда х=3+2=5 Первоначальная площадь прямоугольника равна 5*2=10 ответ: 10см^2
taanaami75
04.02.2021
Алгоритм поиска. Ищем точки экстремума по условию y'=0. Определяем, является ли точка минимумом или максимумом по критерию изменения знака y' в данной точке: если знак y' изменяется с "+" на "-", то функция имеет максимум; если с "-" на "+" - минимум; если не изменяется - не является экстремумом. Наибольшее значение на отрезке определяется как максимальное значение среди всех максимумов функции на отрезке и значений функции на концах отрезка. Наименьшее значение функции определяется как минимальное значение среди всех минимумов на отрезке и значений функции на концах отрезка.
y'=3x²-6x=3x(x-2). Точки, подозрительные на экстремум: x=0; x=2. При x∈(0;2) y'<0 (функция y убывает (y↓)), при x∉(0;2) y'>0 (функция y возрастает (y↑)). y(0) = 0 y(2) = 2³-3*2² = 8-12 = -4
Слева от точки (0;0) функция y возрастающая, справа - убывающая. Значит, точка (0;0) является локальным максимумом. Слева от точки (2;-4) функция y убывающая, справа - возрастающая. Значит, точка (2;-4) является локальным минимумом.
Наибольшее значение функции y на отрезке [-1;3] равно max (y(-1),y(0),y(3)) = max (-4,0,0) = 0 (достигается в точках x=0 и x=3. Наименьшее значение функции y на отрезке [-1;3] равно min (y(-1),y(2),y(3)) = min (-4,-4,0) = -4 (достигается в точках x=-1 и x=2.