Seropyan-Elena1944
?>

{b4+b3=36 {b2+b3=18 найти пятый член прогрессии

Алгебра

Ответы

oyudina
Система
b4+b3=36
b2+b3=18

выразим в первом через b3 и во втором через b2
b3*q+b3=36
b2+b2*q=18   выносим в первом b3 за скобку во втором b2

b3(q+1)=36
b2(q+1)=18  делим первое на второе
b3/b2=2  то есть q=2
тогда b3*3=36  b3=12    b3=b2*q   12=b2*6 b2=2
b4=b3*q=12*2=24
b5=b4*q=24*2=48
ilez03857
Нужно найти производную сначала ее вычислить а потом подставить x

Пишите задание понятно и исчерпывающе!

 

f(x)=корень(x^2-2x)

f'(x)=(корень(x^2-2x))'=1/(2*корень(x^2-2x))     *(x^2-2x)'=(2x-2)/(2*корень(x^2-2x))=

=(x-1)/корень(x^2-2x)

f'(3)=(3-1)/корень(3^2-3)=2/корень(6)=2*корень(6)/6=корень(6)/6

 

f(x)=корень(x^2+1)

f'(x)=(корень(x^2+1))'=1/(2*корень(x^2+1))'  *(x^2+1)'=2x / (2*корень(x^2+1))=

=x/корень(x^2+1)

f'(2)=2/корень(2^2+1)=2/корень(5)=2/5*корень(5)

 

f(x)=(x^2+1)*под корнем x^2+1=(x^2+1)^(3/2)

f'(x)=( (x^2+1)^(3/2) )'=3/2 *(x^2+1)^(3/2-1) * (x^2+1)'=3/2 *корень(x^2+1)* 2x=

=3x*корень(x^2+1)

f'(корень(3))=3*корень(3) *корень((корень(3))^2+1)=

=3*корень(3)*2=6*корень(3)

Подробнее - на -
zuelv

task/29588553   Пользуясь формулой Муавра  и  Бином Ньютона , выразить через степени sinφ и cosφ следующие функции кратных углов :

1) sin 4φ  ;       2) cos 5φ.  

* * * * * * * * * * * * * * * * * * * * * * *

* * *  z₁ =a₁ + i *b₁  ;    z₂ =a₂ +i*b₂ .      Если  z₁ = z₂ , то  a₁ = a₂ и   b₁ = b₂  * * *

Формула Муавра: zⁿ = ( r(cosφ +i sinφ) )ⁿ = rⁿ*[cos(nφ) + i*sin(nφ)].

1 )  (cosφ +i sinφ)⁴ = cos4φ + i * sin4φ     ( а₁ )             * * * r =1 * * *

С другой стороны по формуле бинома Ньютона :

(cosφ +i sinφ)⁴=cos⁴φ+4cos³φ*(isinφ)+6cos²φ*(isinφ)²+4cosφ*(isinφ)³+(i sinφ)⁴

= cos⁴φ - 6cos²φ*sin²φ +sin⁴φ + i*( 4cos³φ*sinφ - 4cosφ*sin³φ) .  ( б₁ )

Сравнивая (а₁) и (б₁) получаем :

sin4φ =4cos³φ*sinφ - 4cosφ*sin³φ  || = 4sinφcosφ* (cos²φ - sin²φ) =

2sin2φ *cos2φ =sin4φ ||  

2)  (cosφ +i sinφ)⁵ = cos5φ + i*sin5φ      ( а₂ )    

(cosφ +i sinφ)⁵ =cos⁵φ +5cos⁴φ*(isinφ)+10cos³φ*(isinφ)²+10cos²φ*(isinφ)³ +

+ 5cosφ*(isinφ)⁴+ (i sinφ)⁵ = cos⁵φ - 10cos³φ*sin²φ +5cosφ*sin⁴φ +

+i*(5cos⁴φ*isinφ -  10cos²φ*sin³φ + sin⁵ φ ).      ( б₂ )    

Сравнивая (а₂) и (б₂) получаем  :

cos5φ = cos⁵φ - 10cos³φ*sin²φ +5cosφ*sin⁴φ  .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

{b4+b3=36 {b2+b3=18 найти пятый член прогрессии
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

yaelenatu
maslprod
Yevsyukov1697
Андрей Анна22
Выражение: а)3а²b·(-a³b) б)(2x²y)³
Konstantinovna Ilyukhin1618
valerii_Georgievna915
eobmankina
Ilin1022
sergeevich
layna1241383
gameover98
m-illarionov
Yevgenii_Gurtovaya1532
ivnivas2008
novocherkutino7