Максим
?>

Представить в виде произведения: z²-6zt+9t²-3z²+9zt

Алгебра

Ответы

Иванович-Васильевна1153
Z^-6zt+9t^-3z^+9zt
9t^-2z^+3zt
Andreevich
1) (16x^2 - 64x) - (9y^2 + 54y) - 161 = 0
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3

2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))

3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
\int { \frac{dy}{y} }=ln|y|
\int { \frac{2xdx}{1+x^2} }=|1+x^2=t;dt=2xdx|=\int \frac{dt}{t} =ln|t|+C=ln|1+x^2|+lnC
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)
katekn6032
1) (16x^2 - 64x) - (9y^2 + 54y) - 161 = 0
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3

2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))

3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
\int { \frac{dy}{y} }=ln|y|
\int { \frac{2xdx}{1+x^2} }=|1+x^2=t;dt=2xdx|=\int \frac{dt}{t} =ln|t|+C=ln|1+x^2|+lnC
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Представить в виде произведения: z²-6zt+9t²-3z²+9zt
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

yuliasam
sorokinae
pravovoimeridian
tteplovoz3789
Boss5519
strelnikov-aa
Ofelya1308
khadisovam9
ignashkinamasha
nailboxru
aobuhta4
tarasovs
opal19575
Васильевич Валерьевна
Представьте в виде многочлена (6-x)(6+x)+(x+2)^2
АнжелаВасильевич
Постройте график уравнения 3х - у =2.