Валентина980
?>

Найдите наименьшее значение суммы квадратов трёх неотрицательных чисел, если их сумма равна 99.

Алгебра

Ответы

TOKAREVA Stepan
Я думаю получится 3267.
х+у+z=99
Наименьшие квадраты чисел равны 33^2 (99÷3=33)
Поэтому наименьшая сумма квадратов будет равна 33^2+33^2+33^2=3267
nadezhdasvirina

Пусть второй рабочий изготовил х деталей. Первый рабочий изготовил на 16% больше. Чтобы найти 16% от числа х, надо 16% перевести в десятичную дробь 0,16, а чтобы найти дробь от числах, надо это число х умножить на дробь 0,16. Значит, первый рабочий изготовил (х + 0,16х) деталей. Вместе оба рабочих изготовили (х + (х + 0,16х)) деталей или 86 деталей. Составим уравнение и решим его.

x + (x + 0,16x) = 86;

x + x + 0,16x = 86;

2,16x = 86;

x = 86 : 2,16;

x = 39,8=40 (деталей) – второй рабочий;

x + 0,16x = 1,16x = 40 * 1,16 = 46 (деталей) – первый рабочий.

ответ. 40 деталей; 46 деталей.

edvard-b
x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Убедимся, что данное дифференциальное уравнение является однородным. 

То есть, воспользуемся условием однородности
\lambda x\cdot y'=\lambda x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+\lambda y\\ \\ \lambda x\cdot y'=\lambda(x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+y)\\ \\ x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Итак, данное дифференциальное уравнение является однородным.

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции u=u(x) с замены:
  y=ux, тогда y'=u'x+u
x\cdot (u'x+u)=x\cdot e^\big{ \frac{ux}{x} }+ux\\ \\ x\cdot (u'x+u)=x(e^u+u)\\ \\ u'x+u=e^u+u

u'x=e^u
По определению дифференциала, получаем
\dfrac{du}{dx} \cdot x=e^u - уравнение с разделяющимися переменными.
Разделим переменные.
\dfrac{du}{e^u} = \dfrac{dx}{x} - уравнение с разделёнными переменными.

Проинтегрируем обе части уравнения
\displaystyle \int\limits { \frac{du}{e^u} } \,=\int\limits { \frac{dx}{x} } \\ \\ \int\limits {e^{-u}} \, du=\int\limits { \frac{1}{x} } \, dx
-e^{-u}=\ln |x|+C - общий интеграл новой функции.

Таким образом, определив функцию u из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: u= \dfrac{y}{x}

То есть, 

-e^\big{-\frac{y}{x} }=\ln |x|+C - общий интеграл исходного уравнения.
Остаётся определить значение произвольной постоянной C. Подставим в общий интеграл начальное условие:
-e^\big{-\frac{0}{1} }=\ln |1|+C\\ C=-1

-e^\big{-\frac{y}{x} }=\ln |x|-1 - частный интеграл, также является решением данного дифференциального уравнения.

ответ: -e^\big{-\frac{y}{x} }=\ln |x|-1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите наименьшее значение суммы квадратов трёх неотрицательных чисел, если их сумма равна 99.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Buninilya
ccc712835
romka1210
rastockin8410
alexkortyukov
Adassa00441
KonovalovKonstantinovna1306
yorestov
eduard495
losevev5619
pokupatel688
punchf
avto3132
Nertman45
Elen-ti81459