Нужно сравнить длины сторон треугольников
Для этого находим их по формуле расстояния между двумя точками
d=√((x2-x1)^2+(y2-y1)^2)
a)
AB=√((2+2)^2+(-1+1)^2)=√(16)=4
BC=√((-2-2)^2+(1+1)^2)=√(16+4)=√20
CA=√((-2+2)^2+(-1-1)^2)=√(4)=2
Стороны не равны, но сторона BC больше остальных, поэтому проверим выполняется ли на них теорема пифагора
(√20)^2=2^2+4^2
20=4+16
20=20
Теорема Пифагора выполняется, значит треугольник прямоугольный.
б)
AB=√((2+2)^2+(-2+2)^2)=√(16)=4
BC=√((0-2)^2+(1+2)^2)=√(4+9)=√13
CA=√((-2-0)^2+(-2-1)^2)=√(4+9)=√13
т.к. равны 2 стороны, то треугольник равнобедренный.
Дан треугольник с вершинами A(-4; 0), B(4:0), C(0; 2).
Так как точки даны на осях, то легко определяем длины сторон его.
АВ = 4-(-4) = 8.
АС = ВС = √(4² + 2²) = √(16 + 4) = √20 = 2√5.
Определяем радиус описанной окружности:
R = (abc)/(4S).
Площадь треугольника S = (1/2)*AB*H = (1/2)*8*2 = 8 кв.ед.
Тогда R = (2√5*8*2√5)/(4*8) = 5.
Теперь можно разложить вектор DC по векторам DA и DB, построением параллелограмма.
Проводим диагональ FG.
Из подобия треугольников DOB и DHG находим:
DG = (3/5)DB, DF = (3/5)DA.
Но так как DA = DB, то DG = DF.
ответ: DC = (3/5)(DA + DB).
Поделитесь своими знаниями, ответьте на вопрос:
3 и 5
х2+х-12=0 т.Виета
3 и -4