1.
Пусть детский билет стоит x руб, а взрослый y руб.
{ 2x + y = 380
{ 3x + 2y = 680
Из 2 уравнения вычитаем 1 уравнение
3x + 2y - 2x - y = 680 - 380
x + y = 300
Вычтем это уравнение из 1 уравнения
2x + y - x - y = 380 - 300
x = 80 руб. стоит детский билет.
y = 380 - 2x = 380 - 2*80 = 380 - 160 = 220 руб. стоит взрослый билет.
2.
Пусть по плану требовалось x машин с грузоподъемностью (60/x) тонн каждая.
В связи с ремонтом взяли (x+1) машину с грузоподъемностью 60/(x+1) тонн каждая.
Так как в каждую машину стали загружать на 3 тонны меньше,
составим уравнение:
60/x - 60/(x+1) = 3
ОДЗ:
x(x+1)
x ≠ 0 ; x ≠ - 1
60(x+1) - 60x = 3 *x(x+1)
60x + 60 - 60x = 3x² + 3x
60 = 3x² + 3x
3x² + 3x - 60 = 0 |÷3
x² + x - 20 = 0
D(дискриминант) = 1² - 4*1*(-20) = 1 + 80 = 81 = 9²
x₁ = (-1 - 9)/(2*1) = -10/2 = -5 не удовл. условию задачи
x₂ = (-1 +9)/(2*1) = 8/2 = 4 машины - требовалось по плану
4 + 1 = 5 машин - использовали на самом деле.
60: 4 = 15 тонн - грузоподъемность по плану.
1. Вначале требовалось 4 машины .
2. На самом деле использовали 5 машин.
3. Пл анировалось перевозить 15 тонн груза на одной машине.
3.
в белом зале
х- рядов
у-мест
ху=792 => у=792/х
(х-2)(у+4)=800
ху+4х-2у-8=800
ху+4х-2у=808
ху-2у=808-4х
у(х-2)=808-4х
у=(808-4х)/(х-2)
(808-4х)/(х-2)=792/х
792(х-2)=х(808-4х)
792х-1584=808х-4х²
4х²-16х-1584=0 делим на 4
х²-4х-396=0
D = (-4)² - 4·1·(-396) = 16 + 1584 = 1600
x1 = (4 - √1600)/(2*1) = (4 - 40)/2 = -36/2 = -18 -не подходит
x2 = (4 +√1600)/(2*1) = (4 + 40)/2 = 44/2 =22 ряда в белом
22-2=20 рядов в голубом.

Это уравнение окружности с центром (1;0) и радиусом R = 1.
Пусть общий вид неизвестной прямой y = kx + b. Эта прямая параллельна прямой x + 2y = 0, т.е. у параллельных прямых угловые коэффициенты равны: k = -0.5. Получаем y = -0.5x + b. Известно, что прямая y = -0.5x + b проходит через центр окружности (1;0), т.е., подставляя координаты точки центра окружности, мы найдем коэффициент b

Таким образом, нашли неизвестную прямую y = -0.5x + 0.5 или x + 2y - 1 = 0
Наглядно нарисуем графики и данный треугольник.
Найдем уравнение прямой, проходящей через точку O(0;0) и перпендикулярно прямой x + 2y - 1 = 0.
Прямая, проходящая через точку M(x₀;y₀) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнением:

Далее найдем координаты точки пересечения двух прямых y = -0.5x + 0.5 и y = 2x.

Точка D имеет координаты
. Расстояние от точки О до точки D:

∠AOB опирается на диаметр AB, следовательно, ∠AOB = 90°, а диаметр окружности в два раза больше радиуса, т.е. AB = 2R = 2 * 1 = 2.
Площадь треугольника AOB:
кв.ед.
ответ: 1/√5 кв. ед..
Поделитесь своими знаниями, ответьте на вопрос:
домножаем первое слогаемое на недостоющую в знаменателе скобку
на (х-6)
(под одну черту дроби)
2х(х-6)+144/(х-6)(х+6)=1
ОДЗ: (х-6)(х+6)=(не равно,зачеркнут знак)1
х-6 не=1 х+6 не= 1
х не= 7 х не= -5
2х(х-6) +144 = 1
2х^2-12х+143=0
а=2
б=12
с=143