Площадь ромба можно найти как произведение стороны на проведенную к ней высоту:
Sabcd = AD · BH
Sabcd = 85 · 51 = 4335 кв. ед.
sales5947
06.10.2022
Надо воспользовать тем, что наименьший положительный период синуса и косинуса равен 2π, а тангенса и котангенса — π. Воспользоваться — значит представить исходную функцию, скажем, в виде f(sin kx), где f — монотонная функция (принимающая каждое своё значение только один раз) . Тогда период равен 2π/k. 1.42. Период равен 2π. 1.44. cos² 3x = (cos 6x + 1)/2, поэтому период равен 2π/6 = π/3. 1.46. lg |sin x| = lg √(sin² x) = ½ lg ((1 – cos 2x)/2), поэтому период равен 2π/2 = π. 1.48. sin^4 x + cos^4 x = (cos² x + sin² x)² – 2 sin² x cos² x = 1 – ½ sin² 2x = 1 – (1 – cos 4x)/4, период равен 2π/4 = π/2. 1.50. |cos(x/2)| = √(cos²(x/2)) = √((cos x + 1)/2), период равен 2π.
Михеев557
06.10.2022
Task/25404599
Доказать , что функция f(x)=(x+4)|x-5|+(x-4)|x+5| является нечётной.
ответ: 4335
Объяснение:
AD = AH + HD = 68 + 17 = 85
Стороны ромба равны, поэтому
AB = AD = 85
ΔABH: ∠AHB = 90°, по теореме Пифагора
Площадь ромба можно найти как произведение стороны на проведенную к ней высоту:
Sabcd = AD · BH
Sabcd = 85 · 51 = 4335 кв. ед.