Пусть расстояние от В до точки встречи - S км/ч. v первого велосипедиста x км/ч, v второго x-5 км/ч. Тогда первый за 1 час 20 минут путь (18+S) км: (18+S) / x = 4/3 Х = 3 * (18+S) / 4
Второй велосипедист путь 18-S км за 1ч 20 мин (18-S) / (х-5) = 4/3 (18+S) / x = (18-S) / (х-5) (18+S) (x-5) = (18-S) x 18x - 90 + Sx - 5S = 18x - Sx 2Sx - 5S - 90 = 0
1) у = Sin x cуществует при любом значении х. Значит, область определения х∈(-∞ ;+∞) Теперь про область значений данной функции. Если вспомнить график (синусоиду) или единичную окружность, то легко увидеть, что для у = Sin x область значений у∈[-1;1] Но в нашем случае в формуле функции стоит -3. Это значит, что каждое значение "у" изменили на -3 Стало: у∈[ -4; -2] 2) у =2 Sin x cуществует при любом значении х. Значит, область определения х∈(-∞ ;+∞) Теперь про область значений данной функции. Если вспомнить график (синусоиду) , то легко увидеть, что для у = 2Sin x область значений у∈[-2;2]. Но в нашем случае в формуле функции стоит ещё +1. Это значит, что каждое значение "у" увеличили на 1. Получим: у∈[ -1; 3] 3) у = Cos 2x cуществует при любом значении х. Но этот косинус стоит под корнем. А корень существует только тогда, когда подкоренное выражение неотрицательно, т.е. 1 - Cos2x ≥ 0 Теперь надо представить график у = Cos 2x. Эта косинусоида "пляшет" в пределах [-1; 1] Если от 1 отнимать все значения косинуса, то будут получаться числа ≥ 0 Вывод: х∈(-∞ ; +∞) Что касается множества значений у, то арифметический квадратный корень из числа- это неотрицательное число. у∈[ 0; +∞)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Одно из чисел 4/7, 6/7, 8/7, 13/7отмечены на прямой точкой 0; 0, 1; 0, 2; 0, 3; 0, 4; 0, 5; 0, 6; 0, 7; 0, 8; 0, 9; 1
6/7 = 0,85...
8/7 = 1,1...
13/7 = 1,8...
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
4/7 6/7 8/7 13/7