(-6, -5 )
Объяснение:
P.S забыла скобку фигурную слева, там где x = -2y-16, -5y=25
Если коротко объяснить решения, то это метод подстановки. Выражаем одну переменную через другую и подставляем ее в другое уравнение. Ещё можно решать через графический метод, но это достаточно долго, можно было привести через метод алгебраического сложения:
{x+2y=-16,
{2x-y=-7; | Будем действовать через игрек. Умножаем уравнение на 2.
{x+2y=-16,
{4x-2y=-14;
Теперь там где фигурная скобка ( она должна быть большой, захватывать два уравнения ), мы ставим знак + и складываем уравнения.
{x+2y=-16,
{4x-2y=-14;
_________
(x+4x)+(2y+(-2y))=-16+(-14)
2y у нас уходят, получаем:
5x=-30, | 5
x=-6.
Возвращаемся к системе уравнений, не забывая переписать x.
{x=-6,
{-6+2y=-16;
{x=-6,
{2y=-16+6;
{x=-6,
{2y=-10; | 2
{x=-6,
{y=-5.
И, собственно, получим тот же ответ. Алгебраическое сложение можно использовать и с минусом. ( если бы у нас вышло, например, x+2y=-16 и 4x+2y=-14. Тогда бы все, что поменялось, так это сложение мы бы заменили вычитанием.
1)6sqrt3(cos(2x+3pi/4))=-9
-sin2x=cos(2x+3pi/4) формула приведения
-6sqrt3*sin2x=-9 ;6sqrt3*sin2x=9
sin2x=9/(6sqrt3)=3/(2sqrt3)=sqrt3/2
2x=((-1)^n)*(pi/6)+pi*n
x=((-1)^n)*(pi/3)+(pi*n)/2
ответ:x=((-1)^n)*(pi/3)+(pi*n)/2
2)sin7x-sinx=0(далее формула разности синусов)
2sin3x*cos4x=0
sin3x*cos4x=0
sin3x=0 cos4x=0
3x=pi*k 4x=pi/2+pi*k
x=(pi*k)/3 x=pi/8+(pi*k)/4
ответ: x=(pi*k)/3; x=pi/8+(pi*k)/4
Поделитесь своими знаниями, ответьте на вопрос:
:1)cos(pi/3+a)cosa+sin(pi/3+a)sina 2)cos(36°+a)cos(54°+a)-sin(36°+a)sin(54°+a)